Myeloma Treatment Paradigm

Immunotherapies under investigation for Multiple Myeloma

IMIDS: a growing family of antitumor Pleiotropic Pathway Modifiers

NH₂ NH₂

Thalidomide

Lenalidomide

Pomalidomide

			Fold Activity			
NH.		LEN	POM	CC-122		
	Immune modulation	x	10x	10x		
	Anti-proliferation (NHL, MM lines)	x	10x	10x		
CC-122	Anti-angiogenesis (HUVEC sprouting)	x	5x	100x		

O

IMIDS: a growing family of antitumor Pleiotropic Pathway Modifiers

Lioznov M, et al. Bone Marrow Transplant. 2010

Luptakova K, et al. Cancer Immunol Immunother. 2013

Mean Cytokine Secretion From Stimulated CD8+ T Cells Isolated From 9 MM Patients With CR or VGPR Following ASCT

Cytokine Secretion (ng/mL)							
Control Lenalidomide Pomalidomid							
IFNγ	66.4 ± 21.0	217.5 ± 62.1*	437.1 ± 137.1*				
TNFα	4.9 ± 1.7	21.4 ± 5.4**	44.9 ± 9.4**				
IL2	1.9 ± 1.7	5.3 ± 2.7	12.7 ± 6.6				

P*<0.01 *P*<0.001 CD8+ T cells were stimulated with anti-CD3 and anti-CD28 antibodies for 144 h Values represent mean ± standard error

Fostier K, et al. Blood. 2013;122(Abstr 3214).

100 100 107 75 50 50 25 0 Thalidomide Thalidomid

IgG + IL-2 IgG +

Wu L, et al. Clin Cancer Res. 2008

Granzyme B

Pleiotropic effects of IMIDs

Imids[®] as a core platform to implement novel therapeutic strategies in hemopoietic malignancies

Therapeutic Mabs

Mouse

'momab' = fully murine (Tositumomab)

Chimeric

'ximab' = chimeric mouse or rat lg variable regions; human constant regions (Rituximab)

Humanized

'zumab' = humanized chimeric mAb with only complementarity determining regions being mouse origin (Bevacizumab)

= fully human (**Daratumumab**)

+

Immunogenicity

Anticorpi monoclonali nel Mieloma Multiplo

Bersaglio	mAb			Stadio dello sviluppo
Molecole di superficie				
SLAMF7 (CS1) [(Signaling Lymphocytic Activation Molecule Family 7 (Cell Surface 1)]	Elotuzumab	approvato da FDA & EMA	Umanizzato	Fase 1/2/3
CD38 (Cluster of Differentiation 38)	Daratumumab Isatuximab (SAR650984) MOR202	approvato da FDA & EMA	Totalmente umano Chimerico Totalmente umano	Fase 1/2/3/4 Fase 1/2 Fase 1/2
CD138 (Cluster of Differentiation 138)	Indatuximab ravtansine (BT062)			Fase 1/2
BCMA (B-Cell Maturation Antigen)	J6M0-mcMMAF (GSK2857916)			Fase 1
Molecole segnale				
IL-6 (Interleukin-6)	Siltuximab			Fase 2
RANKL (RANK Ligand)	Denosumab			Fase 3
VEGF (Vascular Endothelial Growth Factor)	Bevacizumab			Fase 2
DKK1 (Dickkopf 1)	BHQ880			Fase 2
Inibitori del checkpoint immunitario				
PD-1 (Programmed Cell Death-1)	Pembrolizumab Nivolumab Pidilizumab			Fase 1/2/3 Fase 1/2 Fase 1/2
PD-L1 (Programmed Cell Death- Ligand 1)	Durvalumab			Fase 1
CTLA4 (Cytotoxic T-Lymphocyte Antigen 4)	Ipilimumab			Fase 1/2
KIR (Killer Inhibiting Receptor)	Lirilumab			Fase 1

MAb-Based Therapeutic Targeting of Myeloma

Antibody-dependent Cellular cytotoxicity (ADCC)

Complement-dependent Cytotoxicity (CDC)

- Daratumumab
- SAR650984 (CD38)
- Lucatumumab or Dacetuzumab (CD40)
- Elotuzumab (CS1; SLAMF7)
- Daratumumab, SAR650984, MOR 202 (CD38)
- XmAb[®]5592 (HM1.24)

Apoptosis/growth arrest via targeting signaling pathways

- huN901-DM1 (CD56)
- nBT062-maytansinoid (CD138)
- Siltuximab (1339) (IL-6)
- BHQ880 (DKK1)
- RAP-011 (activin A)
- Daratumumab, SAR650984, MOR 202 (CD38)

Multi-faceted properties of CD38 MoAbs.

Clinical Efficacy of Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma

Pooled analysis Studies GEN501 and MMY2002 (Sirius)

Median number of previous lines of therapy: 5 (2-14), including pomalidomide (55%) and carfilzomib (39%)

- ≥18 years of age, ECOG status ≤2^{1,2}
- GEN501¹
 - Open-label, multicenter, phase 1/2, doseescalation and dose-expansion study
 - Relapsed from or refractory to ≥2 prior lines of therapy including PIs and IMiDs
- SIRIUS²
 - · Open-label, multicenter, phase 2 study
 - Patients had received ≥3 prior lines of therapy, including a PI and an IMiD, or were double refractory to a PI and an IMID
- DARA was approved by the FDA on November 16, 2015, based on these studies

16 mg/kg N = 148

Median follow-up of 20.7 months

1. Lokhorst HM, *N Engl J Med*. 2015;373(13):1207-1219

2. Lonial S. Lancet. 2016;387(10027):1551-1560.

Usmani, SZ. Blood. 2016. http://dx.doi.org/10.1182/blood-2016-03-705210.

The Breakthrough (BT) population outcome

RRMM:

Median OS 5-9 months in patients relapsed or refractory MM after ≥3 prior lines of therapy, including IMID and PI

1. Kumar SK, et al. Leukemia. 2012;26(1):149-157. 2. Usmani S, et al. Presented at: 57th American Society of Hematology (ASH) Annual Meeting & Exposition; December 5-8, 2015; Orlando, FL. Abstract 4498.

Pomalidomide:

Median OS 13,1months in

patients relapsed or refractory MM after ≥2 prior lines of therapy, including IMID and PI

San Miguel J et al. Lancet Oncol 2013; 14: 1055-66

Daratumumab – Single Agent:

Median OS of 20 months in

patients with relapsed or refractory, double refractory or relapsed after

≥3 lines of therapy, including pomalidomide and carfilzomib

Usmani S et al. Blood. 2016;128(1):37-44

Daratumumab Regulatory Update

November 2015: FDA

"Daratumumab is indicated for the treatment of patients with multiple myeloma who have received **at least three prior lines of therapy including a proteasome inhibitor (PI) and an immunomodulatory agent or who are doublerefractory** to a PI and an immunomodulatory agent."

April 2016: EMA

"Daratumumab as **monotherapy** is indicated for the treatment of adult patients with **relapsed and refractory** multiple myeloma, whose **prior therapy included a proteasome inhibitor and an immunomodulator**y agent and who have demonstrated **disease progression on the last therapy**."

CASTOR MMY3004 DaraVd vs Vd

Multicenter, randomized, open-label, active-controlled, phase 3 study

 Interim analysis: ~177 PFS events

Daratumumab IV administered in 1000 mL to 500 mL; gradual escalation from 50 mL to 200 mL/hour permitted

RRMM, relapsed or refractory multiple myeloma; DVd, daratumumab/bortezomib/dexamethasone; IV, intravenous; Vel, bortezomib; SC, subcutaneous; dex, dexamethasone; PO, oral; Vd, bortezomib/dexamethasone; PFS, progression-free survival; TTP, time to progression; ORR, overall response rate; VGPR, very good partial response; CR, complete response;

POLLUX MMY3003 Dara-Rd vs Rd

Premedication for the DRd treatment group consisted of dexamethasone 20 mg,^a paracetamol, and an antihistamine

-Von daratumumab doeing days, dexamethasone was administered 20 mg premedication on Day 1 and 20 mg on Day 2. 150, International Staging Dystem; R. Jenaldomide; IV, Intravenous; qw, once weekly; q2w, every 2 weeks; q4w, every 4 weeks; PO, oral; d, dexamethasone; TTP; time to progression; MRD, minimal residual disease Dimopoulous er al. N Engl J Med 2016;375:1319-31

Median (range) follow-up: 13.0 (0-21.3) months

PFS: Prior Lenalidomide Treatment

Prior Lenalidomide Treatment

Treatment effect is consistent regardless of prior lenalidomide exposure

Philippe Moreau, abstract 1151 ASH 2016

Rationale for Earlier Use of MoAbs in Myeloma

- Less toxic than traditional cytotoxic agents
- Good partners for lenalidomide (key for MGUS/SMM)
- Immune system less impaired (key for ADCC)
- Improved overall response rate, VGPR+ rate, and PFS
- Increased likelihood of reaching MRD(-) status
- MRD(-) patients may enjoy long PFS even with limited maintenance therapy

Immune response

(anti-tumor effectors)

(pro-tumor immune suppressive cells)

More Pronounced Benefit From Dara Early (CASTOR)

CI, confidence interval; Dara, daratumumab; DVd, daratumumab, bortezomib, dexamethasone; HR, hazard ratio; Vd, bortezomib, dexamethasone Mateos MV, et al. *Blood.* 2016;128: Abstract 1150.

PFS of Elotuzumab/Rd (ELOQUENT-2) 1 Line Versus 2-3 Prior Lines

Progression-free Survival

Lonial S, et al. N Engl J Med. 2015;373(7):621-631.

Greater *Depth* of Response After 1 Prior Rx

Mateos MV, et al. Blood. 2016;128: Abstract 1150.

Greater *Depth* of Response After 1 Prior Rx

% Achieving MRD(-) Status

MRD(-)* Status Improved PFS in CASTOR

Selected Elo & Dara Trials for MGUS/SMM and NDMM

- SMM/MGUS:
 - ERd in high-risk SMM (NCT02279394)
 - Three schedules of Dara for SMM (NCT02316106)
- Newly-Diagnosed MM:
 - RD+/-Elo in NDMM (ELOQUENT-1) (NCT01335399)
 - RD+/-Dara in NDMM (NCT02252172)
 - RVd+/-Dara in NDMM (NCT02874742)
 - S1211: RVd+/-Elo in NDMM with high-risk-cyto/FISH (NCT01668719)
 - CyBorD+Dara (NCT02951819)
 - KRD-Elo Ph 2 (NCT02969837)
 - ERd induction, consolidation, maintenance w/ ASCT (NCT02843074)
 - [VRD/ASCT/VRD]+/-Elo, then Rd+/-Elo maint (NCT02495922)

ASCT, autologous stem cell transplant; FISH, fluorescence in situ hybridization; NDMM, newly diagnosed multiple myeloma

Rationale for DARA + POM-D

- In a randomized, phase 3 study, pomalidomide plus low-dose dexamethasone (POM-D) in patients relapsed from or refractory to previous treatment with bortezomib or lenalidomide resulted in the following¹:
 - Overall response rate (ORR) = 31%
 - Median progression-free survival (PFS) = 4.0 months
 - Median overall survival (OS) = 12.7 months
- Pomalidomide increases CD38 expression in a time- and dose-dependent fashion in multiple myeloma (MM) cells²
- Increases in T-cell clonality were observed with DARA plus lenalidomide and dexamethasone (Rd) but not with Rd alone in POLLUX³

1. San Miguel J, et al. Lancet Oncol. 2013;14(11):1055-1066.

2. Boxhammer R, et al. Presented at: 51st American Society of Clinical Oncology (ASCO) Annual Meeting; May 29-June 2, 2015; Chicago, IL. Abstract 8588.

3 Chiu C et al Presented at: 58th American Society of Hematoloov (ASH) Annual Meeting & Exposition: December 3-6 2016: San Diedo, CA Abstract 4531

T-cell Clonality Increased With DARA Treatment Over Time

Christopher Chiu et al. Abstract 4531 ASH 2016

MMY1001: DARA + POM-D Cohort

Eligibility criteria

- Refractory to last line of therapy
- ≥2 prior lines of therapy, including
 2 consecutive cycles of lenalidomide
 and bortezomib
- Pomalidomide naïve
- Eastern Cooperative Oncology Group (ECOG) score ≤2
- Absolute neutrophil count ≥1.0×10⁹/L, and platelet count ≥75×10⁹/L for patients with >50% plasma cells
- Calculated creatinine clearance (CrCl) ≥45 mL/min/1.73 m²

Patient Disposition: DARA + POM-D*

- Median follow-up: 13.1 months (range: 0.2-25.8)
- Median duration of treatment: 6.7 months (range: 0.03-20.0+)

ORR^a: **DARA + POM-D**

	DARA + POM-D (N = 103)		70 -	■PR	PR VGPR CR SCR			
	n (%) 95% Cl		ORR = 60%	D				
ORR (sCR+CR+VGPR+PR)	62 (60)	50.1-69.7	50	17%_	8			
Best response	0 (0)	2 4 14 7	50 -	CR or better	9			
SCR CR VGPR PR MR SD PD NE	8 (8) 9 (9) 26 (25) 19 (18) 2 (2) 26 (25) 3 (3) 10 (10)	3.4-14.7 4.1-15.9 17.2-34.8 11.5-27.3 0.2-6.8 17.2-34.8 0.6-8.3 4.8-17.1	% 40 · Y 30 · 20 ·		25	42% VGPR or better		
VGPR or better (sCR+CR+VGPR)	43 (42)	32.1-51.9	10 -	-	18			
CR or better (sCR+CR)	17 (17)	9.9-25.1	0 -					

DARA + POM-D (N = 103)

- Among patients with CR or better, the minimal residual disease negative rate at:
 - 10⁻⁴ threshold = 6/17 (35%)
 - 10⁻⁵ threshold = 5/17 (29%)
 - 10⁻⁶ threshold = 1/17 (6%)

Deep responses were observed with DARA + POM-D

ring board approximant. Deretumumab IEE reflex approximate used to mitigate DADA modiated interference with approximant of CD

PFS: DARA + POM-D

- Median PFS: 8.8 months (95% CI, 4.6-15.4)
- 6-month PFS rate: 57.8% (95% CI, 47.3-66.9)
- 12-month PFS rate: 41.9% (95% CI, 31.5-51.9)

~40% of patients maintain PFS after 1 year

OS: DARA + POM-D

OS by Response Category

12-month OS rate: 66.2% (95% CI, 55.6-74.8)

OS

Patients with SD/MR derive survival benefit with DARA + POM-D

Conclusions: DARA + POM-D

- DARA can be safely combined with POM-D
 - High neutropenia rates in a population with 44% baseline neutropenia
 - Febrile neutropenia rates were consistent with POM-D alone
- DARA (16 mg/kg) + POM-D induced deep responses, including MRD negativity, in a heavily pretreated patient population
 - Median of 4 prior lines of therapy
 - 71% of patients were double refractory to a PI and an IMiD
 - High response rate is maintained in double-refractory and high-risk patients
- 40% of patients remain progression-free after 1 year
- The addition of DARA to POM-D is associated with encouraging OS

A phase 3 study is being planned

Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

Marije B Overdijk¹, Sandra Verploegen¹, Marijn Bögels^{2,3}, Marjolein van Egmond^{2,3}, Jeroen J Lammerts van Bueren¹, Tuna Mutis⁴, Richard WJ Groen⁵, Esther Breij¹, Anton CM Martens^{5,6}, Wim K Bleeker¹, and Paul WHI Parren^{1,7,8,*}

CD47-Targeting Drug Development

Agent (Industry developer)	Description	Tumor Types in Clinical Trials (all phase I) (Clinicaltrials.gov identifier)
Hu5F9-G4 (Forty Seven)	Humanized anti-CD47 monoclonal antibody	 Advanced solid tumors (NCT02216409) CAMELLIA—Relapsed/refractory AML (NCT02678338)
CC-90002 (Celgene)	Humanized anti-CD47 monoclonal antibody	 Advanced solid and hematologic malignancies (NCT02367196) AML and high-risk MDS (NCT02641002)
TTI-621 (Trillium Therapeutics)	Recombinant fusion protein incorporating the N-terminal CD47 binding domain of human SIRPa and the Fc domain of human IgG1	 Relapsed/refractory hematologic malignancies (NCT02663518) Intratumoral injections in patients with relapsed/refractory solid tumors and mycosis fungoides (NCT02890368)

AML indicates acute myeloid leukemia; MDS, myleodysplastic syndrome; SIRPO, signal regulatory protein alpha.

Expanding Leadership in Multiple Myeloma

Building on the IMiD[®] Backbone Across All Lines of Multiple Myeloma

Market Realist Q

Celerne

Source: Celgene Investor Presentation

CANCER BIOLOGY

MYC regulates the antitumor immune response through CD47 and PD-L1

Stephanie C. Casey,¹ Ling Tong,¹ Yulin Li,¹ Rachel Do,¹ Susanne Walz,² Kelly N. Fitzgerald,¹ Arvin M. Gouw,¹ Virginie Baylot,¹ Ines Gütgemann,^{1,3} Martin Eilers,^{2,4} Dean W. Felsher^{1*}

Fig. 3. Constitutive expression of CD47 and PD-L1 in mouse MYC T-ALL 4188 cells prevents recruitment of immune effectors after MYC inactivation. (A) Quantification of CD4⁺ T cells in transplanted control (gray) or constitutive CD47- or PD-L1–expressing (colored) tumors

MYC regulates immune response through CD47 & PD-L1

PD-L1 Expression in Myeloma

B7-H1 Expression Measured in CD138-Selected Cells

B7-H1, PD-L1, a B7-related protein that inhibits T-cell responses HD, healthy donors; MGUS, monoclonal gammopathy of undetermined significance

Liu J, et al. Blood. 2007;110(1):296-304. Dhodapkar MV, et al. Blood. 2015;126(22):2475-2478.

Checkpoints and Agonists

Predictors of Clinical Activity

(based on solid tumor experience)

- Tumor antigen–specific T cells (neoantigens,^{1,2} shared antigens³)
- Antigen presentation^{1,5}
- Evidence of immune recognition
 - Adaptive resistance^{5,6}
- "Target expression" 4-6

1.Snyder A, et al. *N Engl J Med.* 2014;371(23):2189-2199. 2. Rizvi NA, et al. *Science*. 2015;348(6230):124-128. 3. Yuan J, et al. *Proc Natl Acad Sci U S A*. 2011;108(40):16723-16728. 4. Tumeh PC, et al. *Nature*. 2014;515(7528):568-571. 5. Herbst RS, et al. *Nature*. 2014;515(7528):563-567. 6. Topalian SL, et al. *N Engl J Med*. 2012;366(26):2443-2454.

Clinical Activity of Nivolumab in Myeloma

- Some responses in non-Hodgkin lymphoma (NHL)
- Limited efficacy in relapsed multiple myeloma

Tumor	OR, n (%)	CR, n (%)	PR, n (%)	SD, n (%)
B-cell lymphoma (n = 31)	8 (26)	3 (10)	5 (16)	16 (52)
DLCBL (n = 11)	4 (36)	2 (18)	2 (18)	3 (27)
FL (n = 10)	4 (40)	1 (10)	3 (30)	6 (60)
Other B-cell lymphoma (n = 10)	0	0	0	7 (70)
T-cell lymphoma (n = 23)	4 (17)	0	4 (17)	10 (43)
MF (n = 13)	2 (15)	0	2 (15)	9 (69)
PTCL (n = 5)	2 (40)	0	2 (40)	0
Other CTCL (n = 3)	0	0	0	0
Other non-CTCL (n = 2)	0	0	0	1 (50)
Multiple myeloma (n = 27)	1 (4)	1 (4)*	0	17 (63)

CR, complete response; CTCL, cutaneous T-cell lymphoma; DLCBL, diffuse large b-cell lymphoma; FL, follicular lymphoma; MF, mycosis fungoides; OR, overall response; PR, partial response; PTCL, peripheral t-cell lymphoma; SD, stable disease Lesokhin AM, et al. J Clin Oncol. 2016;34(23):2698-2704.

Pembrolizumab in Combination With Lenalidomide and Low-Dose Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Efficacy and Safety Analysis KEYNOTE 023

Maria-Victoria Mateos,¹ Robert Orlowski,² David Siegel,³ Donna Reece,⁴ Philippe Moreau,⁵ Enrique Ocio,¹ Jatin Shah,² Paula Rodríguez-Otero,⁶ Nihkil Munshi,⁷ David Avigan,⁸ Razi Ghori,⁹ Patricia Marinello,⁹ Jesus San Miguel⁶

¹Complejo Asistencial Universitario de Salamanca/IBSAL, Salamanca, Spain; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Hackensack University Medical Center, Hackensack, NJ, USA; ⁴Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁵University Hospital Hotel-Dieu, Nantes, France; ⁶Clinica Universidad de Navarra, Pamplona, Spain; ⁷Dana-Farber Cancer Institute, Boston, MA; ⁸Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; ⁹Merck & Co, Inc, Kenilworth, NJ, USA

Mateos M-V, et al. J Clin Oncol. 2016;34(suppl): Abstract 8010.

Antitumor Activity—Central Review (IMWG 2006)

Best Overall Response n (%)	Efficacy Population [†] (n = 40)	Lenalidomide Refractory (n = 29)		
ORR	20 (50)	11 (38)		
Stringent CR (sCR)	1 (3)	1 (3)		
Very good PR (VGPR)	5 (13)	3 (10)		
PR	14 (35)	7 (24)		
SD	19 (48)	17 (59)		
Disease control rate (CR + PR + SD)	39 (98)	28 (97)		
Progressive disease (PD)	1 (3)	1 (3)		

[†]11 patients NE by central review

3 discontinued within cycle 1 for reasons other than PD (2 no treatment assessments and 1 SD by investigator)

8 inadequate myeloma data for response assessment (5 PD and 3 SD by investigator)

Mateos M-V, et al. J Clin Oncol. 2016;34(suppl): Abstract 8010.

KEYNOTE 185: Study Design

• An open-label, randomized phase III trial in <u>newly diagnosed multiple myeloma (NDMM)</u>

- Primary endpoint: PFS up to 41 months
- Secondary endpoint: OS up to 341 months

Cycles repeat every 28 days

Summary of Responses

Response Category	Evaluable Patients (N = 45)	Double Refractory (N = 32)	High-Risk Cytogenetics (N = 27)		
Overall response, n (%)	29 (65)	22 (68)	15 (56)		
Clinical benefit, n (%)	32 (72)	23 (69)	16 (60)		
Best response, n (%)					
sCR	3 (7)	1 (3)	2 (7)		
CR	1 (2) 29%	1 (3) 24%	1 (4) 15%		
VCPR	9 (20)	6 (18)	1 (4)		
PR	16 (36)	14 (44)	11 (41)		
MR	3 (7)	1 (3)	1 (4)		
SD	11 (23)	7 (22)	9 (31)		
PD	2 (5)	2 (4)	2 (7)		

Badros A, et al. Blood. 2016;128: Abstract 490.

KEYNOTE 183: Study Design

• An open-label, randomized phase III trial in relapsed and refractory multiple myeloma (RRMM)

Secondary endpoint: OS up to 33 months

National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/ NCT02576977. Accessed: February 22, 2017.

Ongoing Clinical Trials Evaluating Checkpoint blockade in Combination with IMiD in Myeloma

Setting	PD1 Antibody	IMiD	Additional Intervention	Phase	Status	Identifier
NDMM	Pembrolizumab	Lenalidomide	n/a	III	R	NCT02579863
RRMM	Pembrolizumab	Lenalidomide	n/a	Ι	R	NCT02036502
RRMM	Pembrolizumab	Pomalidomide	n/a	I/II	R	NCT02289222
RRMM	Pembrolizumab	Pomalidomide	n/a	III	R	NCT02576977
RRMM	Pidilizumab	Lenalidomide	n/a	I/II	R	NCT02077959
Post ASCT	Pembrolizumab	Lenalidomide	n/a	II	R	NCT02331368
RRMM	Nivolumab	n/a	Ipilimumab Lirilumab	I	R	NCT01592370
Post ASCT	Pidilizumab	n/a	DC/MM	II	ONR	NCT01067287
Locally advanced/metastatic solid tumors or hematological malignancies	MPDL3280A	n/a	n/a	Ι	R	NCT01375842
MM	MPDL3280A	Lenalidomide	n/a	Ib	R	NCT02431208

Table 2. Selected immune checkpoint blockers under clinical trials.

NDMM: Newly diagnosed multiple myeloma; RRMM: Relapsed refractory multiple myeloma; ASCT: Autologous stem cell transplantation; R: Recruiting; U: Unknown; C: Completed; ONR: Ongoing, not recruiting; W: Withdrawn prior to enrollment; n/a : not applicable.

Mehmet Kocoglu and Ashraf Badros Pharmaceuticals 2016, 9(1), 3

PD-1 Pathway Blockade Combined With Daratumumab +/- IMiDs is an Area of Active Research

NCT02431208 (Genentech-Roche)

 A Phase Ib Study of the Safety and Pharmacokinetics of <u>Atezolizumab</u> (Anti-PD-L1 Antibody) Alone or in Combination With an Immunomodulatory Drug and/or Daratumumab in Patients With Multiple Myeloma (Relapsed/Refractory and Post-Autologous Stem Cell Transplantation)

NCT02807454 (Medimmune-Celgene)

 A Phase 2, Multicenter, Open-label, Study to Determine the Safety and Efficacy for the Combination of <u>Durvalumab</u> (DURVA) and Daratumumab (DARA) (D2) in Subjects With Relapsed and Refractory Multiple Myeloma (RRMM)

• NCT01592370 (BMS)

- Multiple Phase 1 Safety Cohorts of Nivolumab Monotherapy or Nivolumab Combination Regimens Across Relapsed/Refractory Hematologic Malignancies

National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT02431208. Accessed: February 22, 2017. National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT02807454. Accessed: February 22, 2017. National Institutes of Health. Available at: http://clinicaltrials.gov/ct2/show/NCT01592370. Accessed: February 22, 2017.

Bone marrow stromal cells

Adapted from Neri P., Clin Cancer Res 2016 ; 22(24):5959-5965

Bone marrow stromal cells

Rationale for combination therapy with immunomodulating mAb and lenalidomide

Kritharis et al. Blood 2015

Bone marrow stromal cells

Updated Efficacy

- Median (range) follow-up: 13.0 (0-21.3) months
- An additional 7% of patients receiving DVd achieved ≥CR with longer follow-up

Responses continue to deepen in the DVd group with longer follow-up

IT, intent-to-treat. lote: PFS = ITT population; ORR = response-evaluable population. Kaplan-Meier estimate. P < 0.0001 for DVd versus Vd.