

Application of Nanomedicine in Cancer Imaging: where we are and what needs to be done

Frauke Alves

Dept. Molecular Biology of Neuronal Signals

Dept. Hematology and Medical Oncology Institute of Diagnostic and Interventional Radiology

Multimodal non-invasive imaging in preclinical cancer research

Near infrared fluorescence(NIRF) imaging in oncology to analyse molecular events in deep tissue in vivo

NIR fluorescence dye

Active targeting

Antibody, Peptide, Small molecule

equipped with 4 Laser diodes: 635, 670, 730, 785 nm measurement of fluorescence intensity and fluorescence lifetime

probe application

measure fluorescence

Fluorescence probes in the near infrared range

Antibody fragments

Nanoparticle based probes

Evaluation of novel therapeutic concepts in oncology by NIRF imaging

Matriptase - based tumor therapy

- Assessing expression of biomarkers in cancer
- Targeting molecular events (activatable probes)

MT-Ab*Cy5.5

Monitoring of matriptase activity *in vivo* by activatable probes

Targeting molecular events

(activatable probes)

Napp et al. Int J Cancer 2010

Matriptase activity – in vivo

-24

	nativ	~ 1h
Tumor- FREE Substrate		0
TUMOR		
IUWOR	1. 1996	
Substrate		
TUMOR		
Substrate 0 h after Inhibitor		
I TUMOR		15
Substrate 24 h after Inhibitor		

measurement of matriptase activity in vivo

0

Napp et al. Int J Cancer 2010

24

Time (h)

Improving imaging probes by the use of nanoparticle

Itrybe-loaded polystyrene nanoparticles

Itrybe-loaded and surface-modified NPs were generated by T. Behnke, BAM I.5, Berlin

Brighter fluorescence probes: Itrybe-loaded polystyrene nanoparticles

Broad spectra of ltrybe

Figure modified, Steinhauser et al., 2006, Biomaterials

Behnke, Mathejczyk et al., Biomaterials 2012

PhD thesis Julia Mathejczyk, Joanna Napp

The problem: Bringing the systemic administered NPs to the tumor site!

400 μ g 100 nm-PEG1.5 kDa-Her NPs, 24 h after *i.v.* injection in KPL-4 tumor-bearing mice n=2

Use of Itrybe Nanoparticles in other imaging settings

Behnke, Mathejczyk et al., Biomaterials 2012

Cell tracking by the use of nanoparticle: optical imaging

in an OVA induced allergic asthma mouse model

OVA induced asthma

Control

immortalized macrophages

NIRF imaging

i.n. application; 160 µg PSNPs Itrybe

Markus A, Napp J et al., ACS Nano, Nov 2015

In vivo optical imaging to track macrophages within the lung using Itrybe NIRF nanoparticles

Bronchial alveolar lavage (BAL)

Asthma

Lung tissue cryosections

Markus A, Napp J et al., ACS Nano, Nov 2015

Translation of concepts to in vivo cancer imaging

- Functionalizing Nanoparticles to reach the tumor site
- Improving the pharmakokinetic of Nanoparticles
- Optimizing specificity, stability and non-toxicity of Nanoparticles
- Visualization of immune cells within the tumor site
- Use of Nanoparticles for sensing probes

Use of Nanoparticles to assess the metabolic state of tumors by non invasive NIRF imaging

Oxygen-dependent phosphorescence quenching

NIR oxygen sensing dye Palladium(II)-tetaphenyl-tetrabenzoporphyrin

Some fluorophores can transfer the excitation energy from their triplet state to other molecules. Thereby the acceptor molecule will be transformed to the excited state and the fluorophore will return to the ground state (**intermolecular energy transfer**).

Referenced OX-NPs

In cooperation with U. Resch-Genger (BAM) and M. Schäferling (Uni. Regensburg)

Referenced system for oxygen sensing

Referenced system for oxygen sensing

Oxygen sensing in vitro

Proof of concept for in vivo imaging

Optix MX2

Novel probes: Inorganic-organic hybrid nanoparticles for imaging and drug delivery

In cooperation with Prof. Feldmann and Joachim Heck Institute of Inorganic Chemistry; Karlsruhe Institute of Technology

Expected clinical advantages: prolonged action due to the prolonged drug release, less side effects, simultaneous monitoring of NPs

 $[M]^{2+}[R_{function}(O)PO_3]^{2-}$

 $M = ZrO, Mg_2O$ R = functional organic group

[M]²⁺[R_{dye}(O)PO₃]²⁻

 $[M]^{2+}[R_{drug}(O)PO_3]^{2-}$

"Anti-inflammatory" NPs: Betamethasonephosphate (BMP) "Anti-tumor" NPs: 5-Fluoruracil (5FU)

Heck et al., 2015, J Am Chem Soc. 137: 7329-36. ; Patent DE 10 2014 004 512.9;

Nanoparticles for prolonged drug release and silmultaneous imaging

Imaging

MH-S cells 50 µg in 1 ml; 24h 10 µg in 50 µl PBS subcutaneous

Joanna Napp

Assessing preclinically the efficacy of therapeutic effects in oncology by anatomical Imaging by CT

Monitoring of tumor growth rates

Analysis of tumor vascularization

J. Mißbach-Güntner et al., Neoplasia, 2008

K. Jannasch et al., Int J Cancer, 2009

Missbach et al., Neoplasia, 2007

The clinical problem to be solved

Too much healthy tissue being cut out together with the tumour

Image guided surgery: preclinical validation of CW800-Cetuximab in an ASPC-1 mouse model

Clinical application of optical imaging techniques

Developments needed from chemists, physicists and medical disciplines :

- Handhold camera systems
- Improvement of specific, stable and nontoxic probes including NPs
- Clinical approval
- Improvement of probes and optics to detect signals in deeper tissues

NOVEL *in vitro* diagnostic probes to detect metastases and cancer at an early stage

Highly sensitive and tumour-specific photoluminescent QDs

photostable, functionalised with PEG, water soluble, stable in aqueous solution, quantum yield of 50%, optimised for minimal unspecific binding

sdAb-QDs- QDs

single C-terminal free cysteine residue for specific site-directed and oriented conjugation with the QDs for specific detection of tumor cells

 \Rightarrow anti-HER2; anti-EGFR; anti-CEA

A. Sukhanova et al., Nanomedicine, 2011

NAMDIATREAM: HER2 positive SK-BR3 cells

QD

staining of HER2 expressing SK-BR3 breast cancer cells by anti-HER2 sdAb-QDs

QD-HER2

staining of HER2 expressing SKBR3 breast cancer cells by anti-HER2 sdAb-QDs (FACS)

Rakovich T, Alves F, A. .. Volkov Y, 2014 ACS Nano

Summary

Nanoparticles are promising tools for

In vivo: Sensing of hypoxia Tracking of cells For drug delivery and simultaneous imaging

In vitro:

Novel high sensitive diagnostic tools to detect cancer cells

However they have to be improved to

- reach the tumor site specifically
- be stable, non toxic, biocompatible and biodegradable
- combine imaging and drug delivery

MPI for Exp.Medicine Göttingen • Joanna Napp • Julia Mathejczyk • Roser Ufartes • Fernanda Ramos • Hanna Widera • Bärbel Heidrich • Mara Saccamano • Oliver Reinhardt • Julia Bode (DKFZ)		Dept. of Haematology • Lorenz Trümper <u>Institut für Röntgenphysik.</u> • Tim Salditt • Martin Krenkel
 MPI for Exp. Medicine Walter Stühmer Luis Pardo Franziska Hartung 	 <u>Cooperation</u> Ute Resch-Genger, BAM Berlin Michael Schäferling, Regensburg Claus Feldmann, Karlsruhe Yuri Volkov, Adriele Prina-Mello, Dublin 	Dept. of Haematologie & Oncology, University Medical Center • Andrea Markus • Sarah Greco • Katharina Jannasch
Dept. Diagnostic Radiolo • Joachim Lotz • Christian Dullin • Jeanine Missbach-Gü • Thomas Krüwel • Joanna Napp	 Luigi Bonacini, Geneve Igor Nabiev, Moskow Guliana Tomba, Trieste 	 Bettina Jeep Diana Pinkert-Leetsch Roswitha Streich Julia Schirmer Joanna Napp
Supported by DFG	EU-Grants, Deutsche Krebshilfe	, UMG GE Healthcare, ART