REGIONE VENETO AZIENDA U.L.S.S. n. 9 di Treviso

Con il patrocinio di

SIE - Società Italiana di Ematologia

Unità Operativa di Ematologia Responsabile Dott. F. Gherlinzoni

Anticorpi monoclonali nel mieloma

NUOVE FRONTIERE NELLA TERAPIA DELLE MALATTIE ONCOLOGICHE ED ONCOEMATOLOGICHE

> 20–21 NOVEMBRE 2015 Treviso Sala Congressi Ospedale Ca' Foncello

Elena Zamagni "Seragnoli" Institute of Hematology Bologna University

Main Targets in Multiple Myeloma Plasma Cells and Drugs Tested Against Them

Adapted from Ocio EM et al. *Leukemia*. 2014;28:525 -542.

Red: approved; Green: in phase III

Ongoing Research in Multiple Myeloma

Targets for mAbs

Yang J et al. Therapeutic monoclonal antibodies for multiple myeloma. Am J Blood Res 2011;1:22–33 Mateo G, et al. Prognostic value of immunophenotyping in multiple myeloma: A study by the PETHEMA/GEM Coopereative study groups on patients uniformly treated with high-dose therapy Atanackovic D, et al. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica 2014;96:1512–20.

CD38 as a Target

- Type II transmembrane glycoprotein which is highly expressed in MM
- Enzymatic activities include cADPR and NAADP production that are needed for calcium signaling and regulation
- As an antigen, responsible for regulation of adhesion, proliferation, and differentiation

Malavasi et al. *Physiol Rev* 2008 Lonial S et al, Leukemia 2015

Distribution of human CD38

Tissue	Cell population
Lymphoid	
Blood	T-cells (precursors, activated) B-cells (precursors, activated) Myeloid cells (monocytes, macrophages, dendritic cells) NK cells Erythrocytes Platelets
Bone marrow	Precursors (very early CD34+ cells are CD38-) Plasma cells
Cord blood	T and B lymphocytes, monocytes
Thymus	Cortical thymocytes
Lymph nodes	Germinal center B cells
Non-lymphoid	
Bone	Osteoclasts
Brain	Purkinje cells Neurofibrillary tangles
Eye	Cornea Retinal ganglia cells
Gut	Intraepithelial lymphocytes <i>Lamina propria</i> lymphocytes
Pancreas	β-cells
Muscle	Sarcolemma (smooth and striated muscle)
Prostate	Epithelial cells
Kidney	Glomeruli

CD38 expression is low on most mature lymphoid and myeloid cells¹

•

 CD38 is not expressed on pluripotent hematopoietic precursor cells, which are crucial to longterm bone marrow recovery²⁻³

1. Malavasi F, et al. *Physiol Rev* 2008; 88: 841-886; 2. Theilgaard-Monck, et al. *Bone Marrow Transplant* 2003; 32: 1125-1133; 3. Terstappen, et al. *Blood* 1991; 77: 1218-1227

Three monoclonal antibodies targeting anti-CD38

Fully human anti-CD38 mAb:

- Daratumumab (DARA)
- MOR202 (MOR)

Chimeric anti-CD38 mAb:

 Isatuximab (SAR650984, SAR, Sanofi)

https://download.ama-assn.org/resources/doc/usan/x-pub/isatuximab.pdf de Weers et al. J Immunol 2011;186: 1840–1848 http://www.morphosys.com/pipeline/proprietary-product-portfolio/mor202

Therapeutic impact of targeting CD38

The binding CD38-antibody induces:

- Antibody-dependent cellular cytotoxicity (ADCC)
- Antibody-dependent cellular phagocytosis (ADCP)
- Complement-dependent cytotoxicity (CDC)
- Direct apoptosis

Lonial S et al, Leukemia 2015

ADCC and CDC is not dependent upon when a patient is treated

Nijhof et al, *Leukemia* 2015 (epub)

CD38 Expression Correlated With Cell Death (Patient Samples)

Nijhof et al, Leukemia 2015 (epub)

Improvement of DARA-induced ADCC by LEN in BM-MNC of MM patients

Van der Veer et al. *Haematologica* 2011;96:284-290

IMiD effect with SAR

Lokhorst et al. N Engl J Med 2015

Progression-free survival

Median follow-up: 16.9 months (8 mg/kg), 10.2 months (16 mg/kg)

[•] DOR: 6.9m & NR

65% of the patients who had responded to 16 mg did not have progression @ 12 months

OS @ 12 months: 77% in both groups

Tolerability

Most AEs grade 1 or 2

- Most common (≥ 25% of pts): fatigue, allergic rhinitis, pyrexia
- Nasopharyngitis 24%, cough 21%

Grade 3 or 4 AEs:

- 53% in 8mg/kg group and 26% in 16 mg/kg group
- In ≥ 2 patients: pneumonia (5 pts), thrombocytopenia (4 pts), neutropenia, leukopenia, anemia, hyperglycemia (2 each)

Infusion-related reactions:

- 71% (all grade 1/2, except 1 grade 3)
- Mostly during first infusion (only 8% in subsequent infusions)
- No discontinuation

Isatuximab (SAR) in R/R MM (Phase I): SINGLE AGENT ACTIVITY

- 40 pts, median 6 lines prior therapy
- Minor responses or better : 33.7% (38.3% at >10 mg)
- Time to response 4.6 weeks
- Escalating doses 1-20 mg/kg q2W: MTD not reached

Martin et al. ASCO 2014

- Part 1 (n=13):
 Dose escalation study: 2-16 mg/kg
- Part 2 (n=32):
 - Expansion cohort: 16 mg/kg

Key inclusion criteria:

- Part 1: relapsed and refractory MM following 2-4 prior lines
- Part 2: relapsed and refractory MM following \geq 1 prior lines (no upper limit)
- Patients refractory or intolerant to LEN excluded

Overall best response

Mean duration of follow-up: 12.9 months (Part 1), 5.6 months (Part 2)

Plesner et al. ASH 2014

Response rate

- ORR 54.5% in rel/ref patients receiving DARA+POM-D
- ORR 100% in newly diagnosed patients receiving DARA+VD, DARA +VTD or DARA+VMP

Ongoing studies with DARA in MM

- Relapsed/Refractory:
 - Dara Vd vs Vd
 - Dara Rd vs Rd
- Newly diagnosed:
 - Dara VMP vs VMP
 - Dara Rd vs Rd
 - Dara VTD vs VTD + ASCT + consolidation + Dara maintenence vs observ

Phase 1b: Isatuximab + Len/dex in rel/ref MM

• 3 + 3 dose escalation + expansion study

- Patients: n=31
 - Median 6 prior lines
 - 94% prior Len
 - Refractory to IMiD: 81%

Response and PFS

Response by dose level and overall

PFS at 9 months follow-up

- Overall (n=31): 6.2 mos
- 1-2 prior lines (n=7): not reached
- ≥ 3 prior lines (n=24): 5.8 mos

Martin et al. ASH 2014

Managing mAb therapy in the clinic

- Special considerations with anti-CD38 mAb therapy
 - Infusion-related reactions (IRRs)
 - Assessment of response
 - Blood typing

Clinical assessment of M-protein response in MM and interference through mAbs

The daratumumab concentration used clinically is equivalent to 1g/L

McCudden C, et al. ASCO 2015

Development of an assay to distinguish M-protein from therapeutic antibody

- Daratumumab IFE reflex assay (DIRA):
 - Incubation of serum samples of baseline and daratumumab-treated patients with or without an anti-idiotype mAb
 - IFE: Daratumumab migration is shifted from the gamma region by the anti-idiotype mAb

Blood compatibility testing for patients receiving anti-CD38 mAbs

- CD38 is weakly expressed on human red blood cells (RBCs)
- Daratumumab binds to CD38 on RBCs → false positive results in the Indirect Antiglobulin Test (indirect Coombs test)
- Daratumumab does not interfere with the major antigens of ABO/RhD typing, but with the minor ones
- Options to circumvent the in vitro effect:
 - Dithiothreitol (DTT): denaturation of RBC CD38 epitopes → prevention of Dara binding to RBCs
 - Anti-idiotype mAb and soluble CD38 → prevention of Dara binding to RBCs
 Chapuy et al. Transfusion. 2015;55(6 Pt 2):1545-54 Oostendorp et al. Transfusion. 2015;55(6 Pt 2):1555-62

SLAMF7 as a target

- SLAMF7 is a glycoprotein highly expressed on >95% of myeloma cells
- It shows lower expression on NK cells and little to no expression on normal tissues or hematopoietic stem cells

Adapted from Guo et al, Mol Cell Biol 2015

Dual Mechanism of Action of Elotuzumab

- Humanized IgG1 immunostimulatory monoclonal antibody targeted against SLAMF7
- A: Direct activation Binding to SLAMF7 directly activates natural killer cells,² but not myeloma cells³
- B: Tagging for recognition Elotuzumab activates natural killer cells via CD16, enabling selective killing of myeloma cells via antibodydependent cellular cytotoxicity (ADCC) with minimal effects on normal tissue²

1. Hsi ED et al. Clin Cancer Res 2008;14:2775-84

- 2. Collins SM et al. Cancer Immunol Immunother 2013;62:1841–9
- 3. Guo H et al. Mol Cell Biol 2015;35:41-51

SLAMF7 = Signaling Lymphocyte Activation Molecule-F7

Elotuzumab Exhibits Synergy With Both Lenalidomide and Bortezomib

 Lenalidomide and bortezomib enhance the NKC-Mediated anti-myeloma activity of elotuzumab

- Lenalidomide enhances T-cell activation and cytokine production leading to Natural Killer cell stimulation
- Lenalidomide also exhibits direct antimyeloma activity, which enhances the cells' sensitivity to Natural Killer cell-mediated killing

A, B – *in vivo* tumor growth inhibition of OPM2 xenograft in SCID mice.

- 1. Van Rhee F et al. Mol CanTher. 2009;8:2616-2624.
- 2. Balasa et al. Cancer Imm and Immunothe. 2015; 64 (1):61-73.

 Bortezomib exhibits direct antimyeloma activity, which augments the cells' sensitivity to Natural Killer cell-mediated killing by enhancing activating ligands and reducing inhibitory ligands on myeloma cells

No single agent activity of Elotuzumab

Phase Ib/II study of Elo-Len-Dex in R/R MM

- Phase II: patients (N=73) with R/R MM with 1–3 prior therapies were randomized to elotuzumab 10 or 20 mg/kg IV combined with
 - Lenalidomide 25 mg po
 - Low-dose dexamethasone 40 mg po Until PD

^{* *}Lonial S et al. *J Clin Oncol.* 2012;30:1953-1959.

Phase II Efficacy: Overall Response Rate (ORR)

	Elotuzumab dose group		
Assessment	10 mg/kg (n=36)	20 mg/kg (n=37)	Total (n=73)
Overall response*, n (%)	33 (92)	28 (76)	61 (84)
Best confirmed response, n (%)			
Stringent complete response (sCR)	2 (6)	1 (3)	3 (4)
Complete response (CR)	4 (11)	3 (8)	7 (10)
Very good partial response (VGPR)	17 (47)	14 (38)	31 (43)
Partial response (PR)	10 (28)	10 (27)	20 (27)
Stable disease (SD)	3 (8)	7 (19)	10 (14)
Missing	0	2 (5)	2 (3)
Median time to first response, (mo)	1.0	1.7	1.0
Median duration of response (mo)	23.0	18.0	20.8

Phase II Efficacy: Progression-Free Survival

Richardson P et al, ASH 2014

ELOQUENT-2: Elo-Ld vs Ld in R/R MM

Key inclusion criteria

- RRMM
- 1–3 prior lines of therapy
- Prior Len exposure permitted in 10% of study population (patients not refractory to Len)

Repeat every 28 days

Assessment

- Tumor response: every 4 weeks until progressive disease
- Survival: every 12 weeks after disease progression

 Open-label, international, randomized, multicenter, phase 3 trial (168 global sites)

- Median n° treatment cycles Elo Ld: 19 (1-42)
- 83% pts received more than 90% dose intensity

Co-primary Endpoint: Overall Response Rate

Co-primary Endpoint: Progression-Free Survival

From N Engl J Med, Lonial S et al, Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. Copyright © (2015) Massachusetts Medical Society. Reprinted with permission

E-Ld-treated patients had a 30% reduction in the risk of disease progression or death; treatment difference at 1 and 2 years was 11% and 14%, respectively

PFS analysis used the primary definition of PFS

Detection of Elotuzumab by SPEP and SIFE

Baseline:

Cycle 34 (2.6 years of treatment):

Elotuzumab can be detected in the SPEP/SIFE with good specificity and sensitivity, indicating that complete response rate could be underestimated

SIFE = serum immunofixation electrophoresis; SPEP = serum protein electrophoresis

Infusion Reactions

Events $p(\theta/)$	E-Ld (n=318)			
	Grade 1/2	Grade 3	Grade 4/5	
Infusion reaction	29 (9)	4 (1)	0	
Pyrexia	10 (3)	0	0	
Chills	4 (1)	0	0	
Hypertension	3 (1)	1 (<1)	0	

- Infusion reactions occurred in 10% of patients
- 70% of infusion reactions occurred with the first dose
- No Grade 4 or 5 infusion reactions
- Elotuzumab infusion was interrupted in 15 (5%) patients due to an infusion reaction (median interruption duration 25 minutes)
- 2 (1%) patients discontinued the study due to an infusion reaction

Conclusions and future directions

- Remarkable single-agent activity of anti CD-38 moAbs
- Very positive and solid results of DARA in heavily pretreated MM patients
- Combination therapies based upon rational preclinical models
- High response rates of moAbs with Ld and Vd, encouraging activity with current backbone agents
- Favorable safety profile, with no additional toxiticies a part from infusion reactions: ideal partners for combination regimens, across all lines and for all patients
- Extensive ongoing clinical development
- Further define methods to enhance CD38 expression and to optimize combos