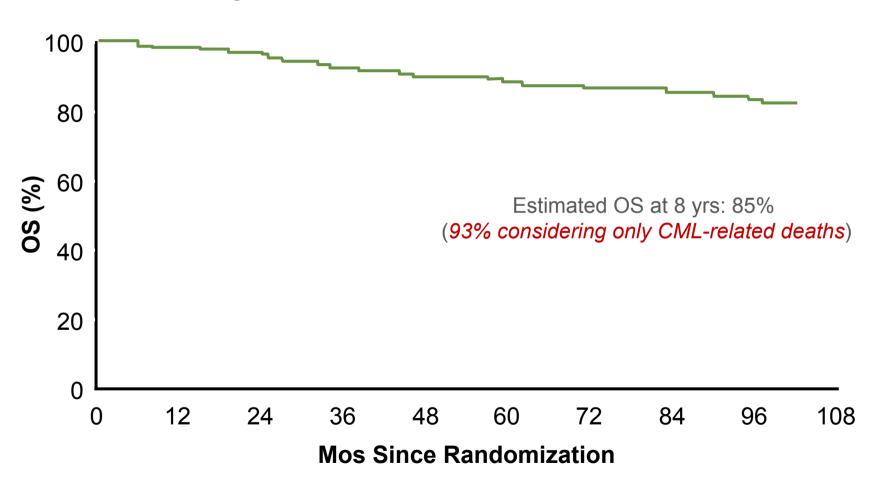


La terapia della LMC: è possibile guarire senza trapianto?

Fabrizio Pane




## What could be the concept of "Cure" in CML?

- Sustained DMR with or without TKI therapy
- And 100% CML-related survival
- And QoL comparable to age-matched population



#### **Medium-term Results of Imatinib Treatment in CML**

#### IRIS Trial Update: the 8-Year Overall Survival



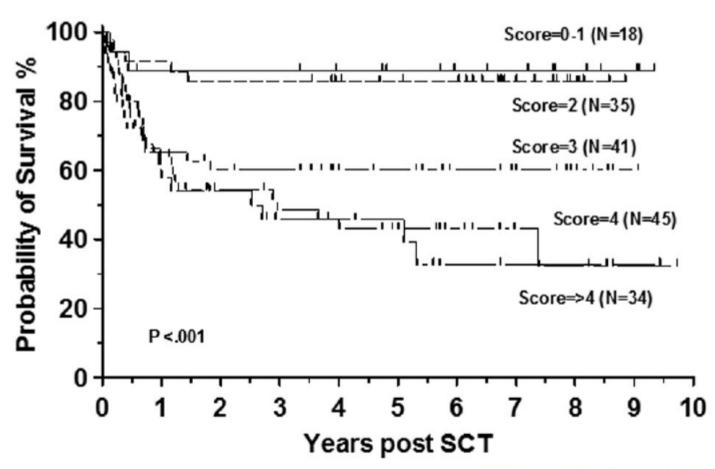


# Overall outcome of TKI treatment in CML ENESTnd + DASISION, 4 years data

|                        | NILO+DASA | vs | IMATINIB | р      |
|------------------------|-----------|----|----------|--------|
| No. of pts             | 540       |    | 541      |        |
| Still on treatment     | 66%       |    | 61%      |        |
| Cum. prob. of MR 3.0   | 75%       |    | 58%      | <0.001 |
| Cum. prob of MR 4.5    | 40%       |    | 29%      | <0.001 |
| "Progression"#         | 6.8%      |    | 7.6%     |        |
| "PFS"                  | 91%       |    | 91%      |        |
| AP/BP (transformation) | 3.9%      |    | 7.4%     | 0.04   |
| Death                  | 6.3%      |    | 7.4%     |        |
| Overall survival       | 93%       |    | 92%      |        |

<sup>#</sup> ENESTnd: AP, BP, death due to any cause at any time DASISION: rising WBC count, loss of CHR, loss of MCyR, CCA/Ph+, AP, BP




### **TKI Side effects**

- Heterogeneous pattern of the different TKIs
- Three general categories of side effects
  - Early onset, serious (grade 3/4) side effects
    - 10% of patients
    - Cause of early discontinuations
  - Minor (grade 1/2), mid / long term side effects
    - 50% of patients
    - Manageable but affect quality of life also leading to poor adherence
  - Off-target complications
    - Cardiovascular system, vessels, liver, pancreas, metabolism etc.
    - Incidence and seriousness not fully understood



# Three decades of transplantation for CML

Survival of 173 patients allo-allografted from 2000 to 2010 stratified by EBMT risk score





## Donor lymphocyte infusion for relapsed CML after SCT

Table 4 Time-dependent covariate Cox regression model of survival after DLI

| Parameters                       | HR    | 95% CI    | P-value |
|----------------------------------|-------|-----------|---------|
| No. GVHD                         | 1     |           |         |
| GVHD overall effect              | 2.27  | 1.5 3.6   | 0.0001  |
| Acute GVHD                       | 2.25  | 1.4 3.7   | 0.001   |
| Chronic GVHD <sup>a</sup>        | 1.10  | 0.6 1.9   | 0.75    |
| GVHD within 45 days <sup>b</sup> | 2.78  | 1.6 4.8   | 0.001   |
| GVHD after 45 days               | 1.85  | 1.0 3.3   | 0.013   |
| Other covariates                 |       |           |         |
| Stage of disease at DLI          |       |           | 0.0001  |
| Molecular relapse                | 1     |           |         |
| Cytogenetic relapse              | 1.1   | 0.5 2.5   |         |
| Hematological relapse            | 2.33  | 1.1 4.9   |         |
| Accelerated phase                | 10.94 | 4.9 24.7  |         |
| Blast crisis                     | 35.43 | 15.2 82.4 |         |
| Time from BMT to DLI             |       |           |         |
| <2 years                         | 1     |           |         |
| >2 years                         | 0.69  | 0.4 1.1   | 0.12    |

Abbreviations: CI = confidence interval; DLI = donor lymphocyte infusion; HR = hazards ratio.

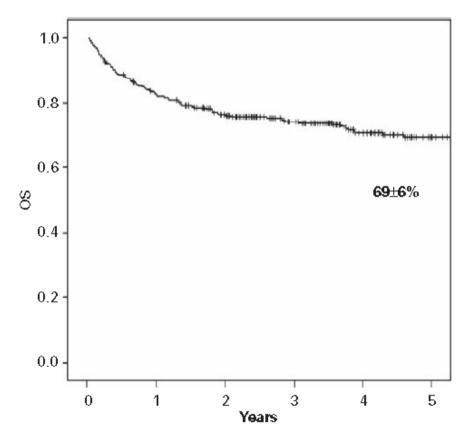



Figure 2 5-year OS after donor lymphocyte infusion of 69% (95% confidence interval 63 75%).



<sup>\*</sup>chronic GVHD without prior acute GVHD.

<sup>&</sup>lt;sup>b</sup>GVHD irrespective of clinical presentation.

## Relapse and Late Mortality in 5-Year Survivors of HSCT for CML in First CP

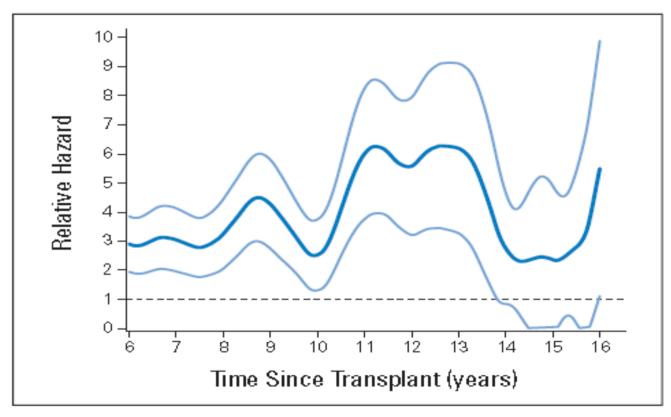
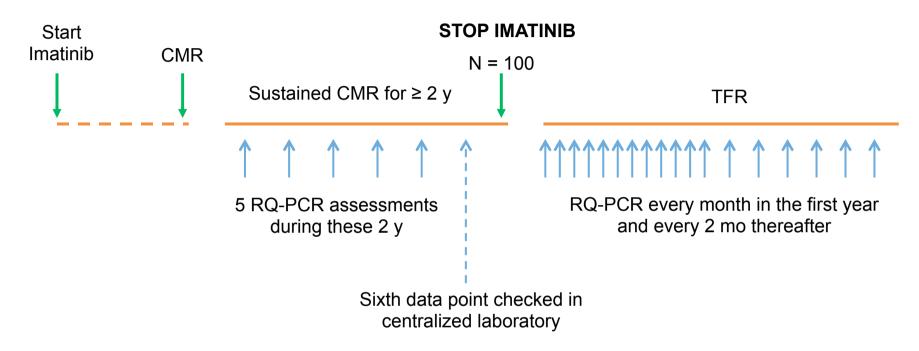


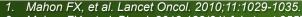

Fig 3. Relative excess mortality (dark blue line) compared with age-, sex-, and race-matched general population for patients surviving in remission for at least 5 years after myeloablative allogeneic hematopoietic cell transplant for chronic myeloid leukemia. A relative risk of 1 indicates that the mortality rate of the population of interest is similar to that of the general population. Light blue lines represent 95% CIs.




## History of treatment discontinuation

- Successful discontinuation examples already in the IFN era
  - 22 of 44 patients in CCR stopped treatment successful (Bonifazi F. et al., Blood 2001)
  - 43% (of 15 patients) in CCR stopped treatment successful (Mahon FX. et al., JCO 2002)
  - 39 of 140 patients in CCR kept response without treatment for a median of 50 months (Kantarjian H. et al., Cancer 2003)
- First case reports with TKI treatment already in 2004 (Mauro M. et al., Leuk Res 2004)
- Pilot study with 12 patients in 2007 (Rousselot P. et al., Blood)

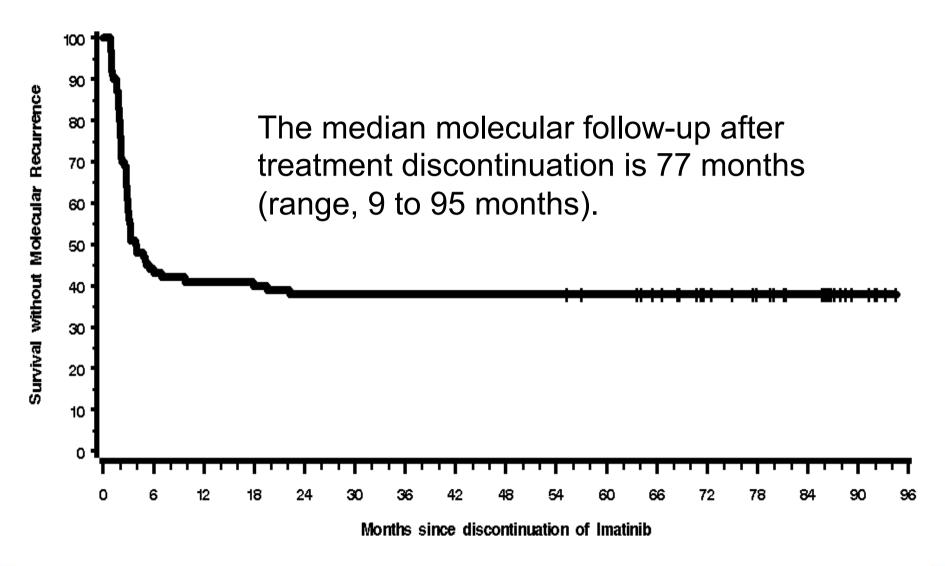


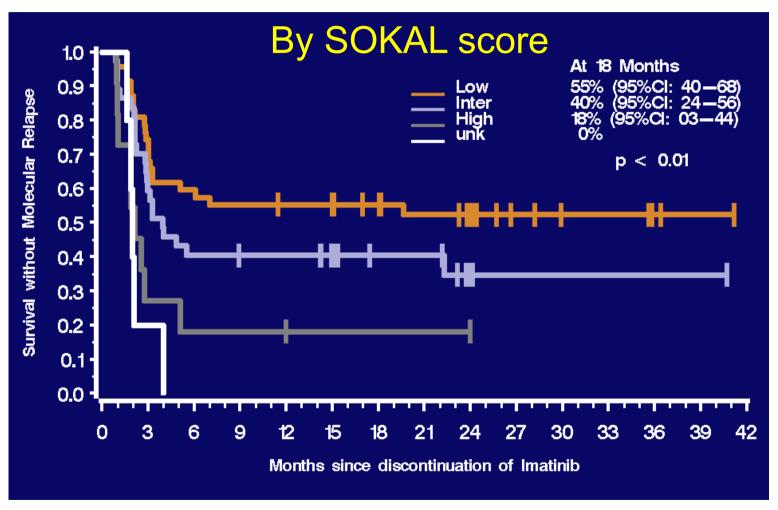

## STIM1 Study Design



Response required to attempt TFR: Sustained CMR (no detectable BCR-ABL1 for  $\geq 2$  consecutive years with  $\geq 5$  RQ-PCR assessments), confirmed in a central laboratory with a sensitivity of > 4.5 logs

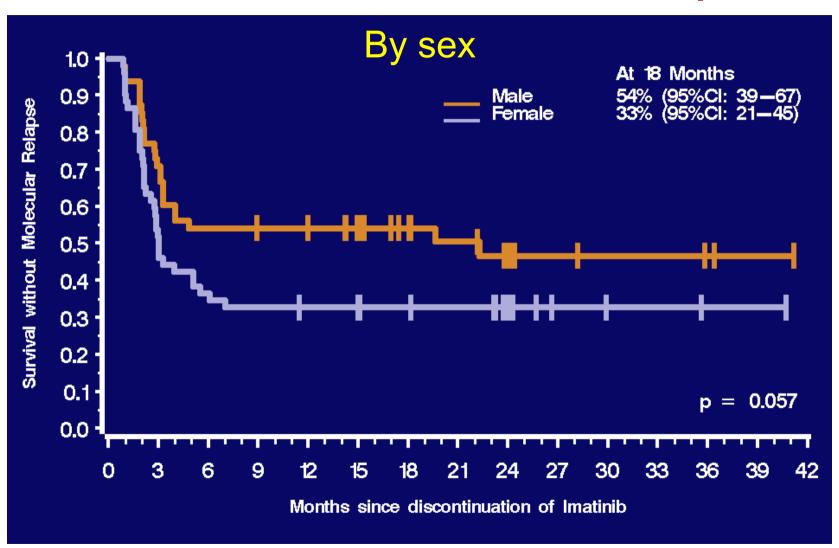
**Molecular relapse**: Confirmed *BCR-ABL1* transcript positivity in 2 consecutive RQ-PCR assessments with a 1-log increase in the second assessment relative to the first, or loss of MMR in 1 assessment


CMR, complete molecular response; MMR, major molecular response (BCR-ABL1  $\leq$  0.1% on the International Scale [IS]); RQ-PCR, real-time quantitative polymerase chain reaction; STIM1, Stop Imatinib 1 TFR study.

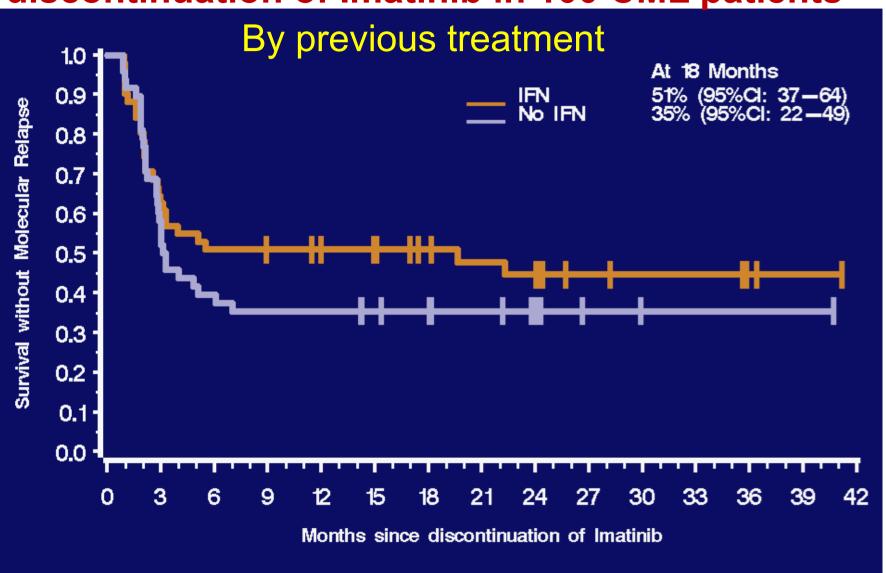



Mahon FX, et al. Blood. 2013;122(21) [abstract 255].
 Etienne G, et al. Blood. 2015;126(23) [abstract 345].

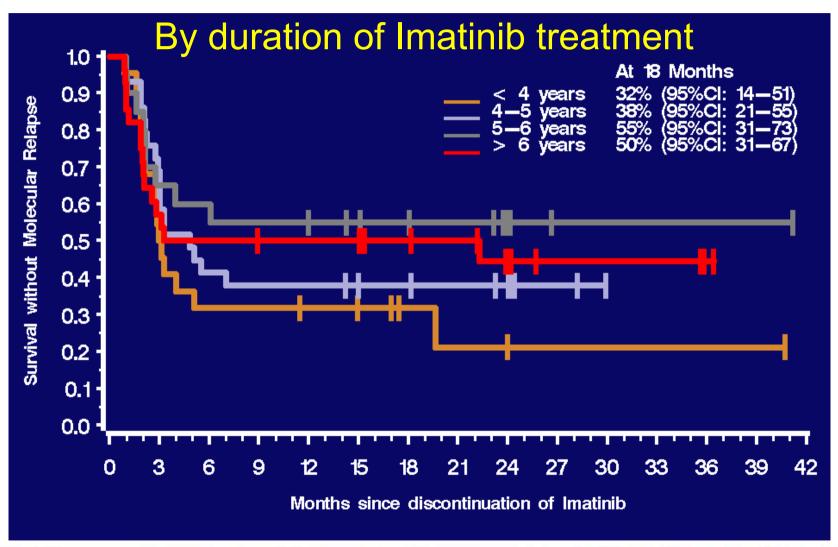



# STIM 1: Molecular Recurrence-Free Survival (N = 100)






Among the 11 patients with high Sokal Risk score 9 relapsed
















### Imatinib discontinuation studies

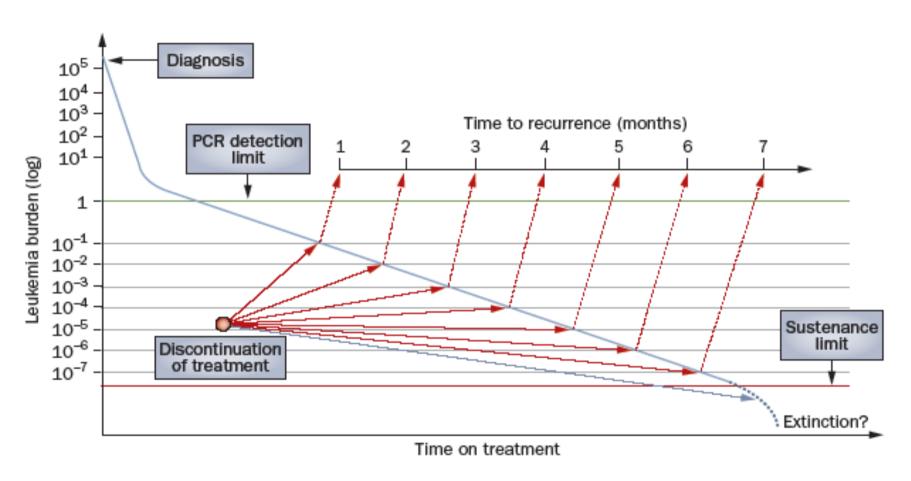
| Study             | N   | Treatment<br>before<br>discontinuation | Response<br>Required to Stop Therapy                                             | Definition of relapse                                    | TFR<br>(different FU) |
|-------------------|-----|----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|
| STIM 1            | 100 | IFN then Imatinib for 3 years          | CMR                                                                              | Loss of MMR or<br>≥1-log increase<br>in BCR-ABL          | 39 %                  |
| STIM 2            | 200 | lmatinib for ≥3 years                  | Imatinib for ≥3 years As for STIM                                                |                                                          | 46 %                  |
| ALLG CML8         | 40  | lmatinib for ≥3 years                  | UMRD 2 years                                                                     | Loss of MMR or<br>confirmed loss of<br>MR <sup>4.5</sup> | 45 %                  |
| According to STIM | 80  | lmatinib for ≥3 years                  | As for STIM; occasional positive samples eligible                                | Loss of MMR                                              | 64 %                  |
| EUROSKI           | 868 | Imatinib, Dasatinib,<br>Nilotinib      | MR⁴ for ≥1year;<br>TKI for ≥3 years                                              | Loss of MMR                                              | 54 %                  |
| ISTAV             | 112 | lmatinib                               | Undetectable PCR (3 PCRs)                                                        | Loss of MMR                                              | 52%                   |
| DESTINY           | 168 | Imatinib, Dasatinib,<br>Nilotinib      | MR <sup>4</sup> and stable response under<br>half standard dose for 12<br>months | Loss of MMR                                              | In progress           |



### 2°-G TKI discontinuation studies

| Study                | Ņ   | Treatment Response Required to Stop Therapy |                                                         | Definition of relapse                                        | TFR<br>(different FU) |
|----------------------|-----|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|-----------------------|
| STOP 2G-TKI<br>pilot | 50  | Nilotinib or Dasatinib                      | CMR for median 29 mo.                                   | Loss of MMR                                                  | 61%                   |
| ENEST<br>freedom     | 175 | Nilotinib                                   | MR <sup>4.5</sup> for ≥1year                            | Loss of MMR                                                  | 51.6%                 |
| ENESTop              | 117 | Nilotinib                                   | MR <sup>4.5</sup> for ≥1year                            | Confirmed loos<br>of MR <sup>4.0</sup> or any<br>loss of MMR | 58.7%                 |
| ENESTpath            | 650 | Nilotinib                                   | Randomized<br>MR <sup>4.5</sup> for ≥1year vs<br>≥2year | Confirmed loos<br>of MR <sup>4.0</sup> or any<br>loss of MMR | In progress           |
| ENESTGoal            | 300 | Nilotinib                                   | MR <sup>4.5</sup> for ≥1year                            | Confirmed loos<br>of MR <sup>4.0</sup> or any<br>loss of MMR | In progress           |
| DASFREE              | 75  | Dasatinib                                   | MR <sup>4.5</sup> for ≥1year                            | Loss of MMR                                                  | In progress           |
| DADI                 | 63  | Dasatinib                                   | DMR for ≥1year                                          | Loss of MMR                                                  | 48%                   |



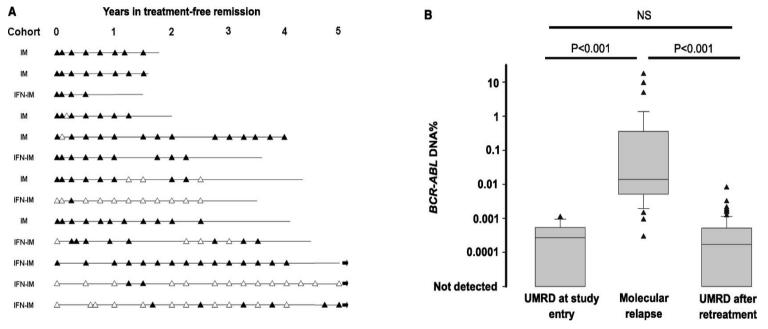

### **Deep Molecular Response**

#### Issues relevant for a TFR trial

- Stability of response (sustained response)
  - Need for reproducibility at RQ-PCR low levels
    - NGS vs Digital PCR
- Sensitivity (4.5 vs 5.0 .. Better?)
  - Need for sensitive techniques
    - Digital PCR vs Genomic DNA PCR
- Quantitation of Ph+ Stem cells?



## Hypothetical Model of CML persistence and recurrence versus extinction



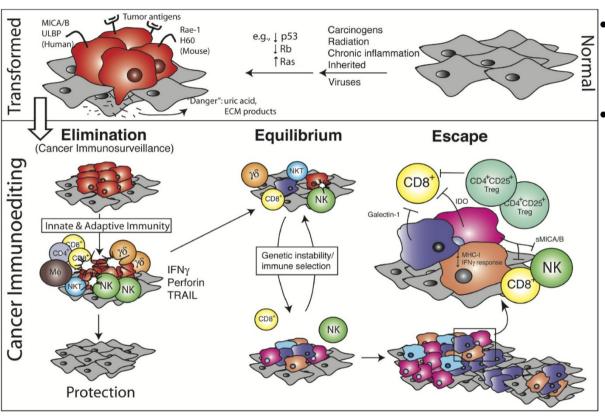

The eradication of the leukemic clone may depend on inherent features of the disease or on the duration of therapy, or both.



# Lessons learned from discontinuation trials

 Patients who discontinued treatment still have residual Ph positive cells left as indicated by genomic PCR data




(Ross et al Blood 2013)

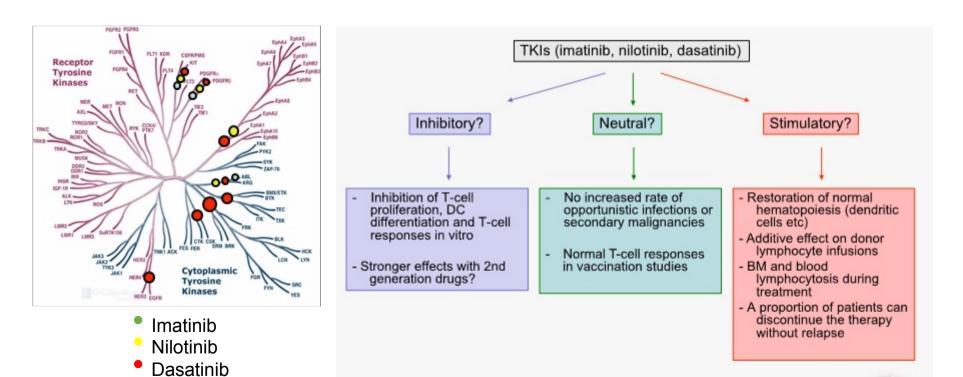
 Fluctuating levels of residual disease often observed in patients after treatment discontinuation

Does immune system play a role in CML control?



## **Cancer immunoediting**

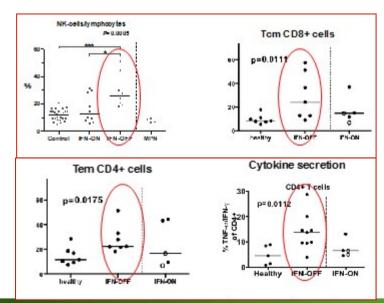


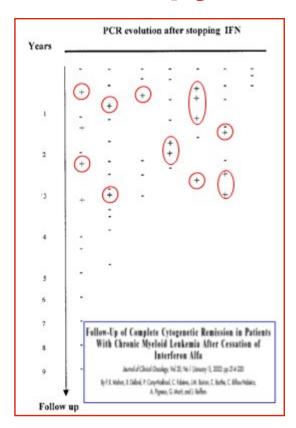

- I m m u n e s y s t e m dysfunctional (anergic) in many cancer types
- In CML:
- Leukemia specific T- cells exhausted
- High levels of PD1 on CD8 cells (Mumbrect et al, Blood 2009; Christiansson et al PlosOne 2013)
- Quantitative and qualitative defects in NKcells (Chen et al, Leukemia 2011)

Can the function of immune system be restored in CML?



### TKI Induced Immunomodulation


- Tyrosine kinase inhibitors are not entirely selective; effects on cells other than the malignant target cell
- Inhibition of functionally important kinases in normal cells
  - eg. 2nd generation TKI Dasatinib inhibits many kinases important in immune responses (T- and B-cell activation and proliferation)






## Discontinuation of IFN monotherapy

- IFN discontinuation(IFN monotherapy)
  - Most patients have molecular evidence of MRD despite of successful discontinuation
  - Patients who have achieved good response to IFN-a and have been able to stop the therapy, have
    - Increase in NK-cell number
    - Clonal γ/δ T-cells and a unique cytokine profile
    - Increased CD8+ central and CD4+ effector memory pool and secretion of Th1 inflammatory cytokines



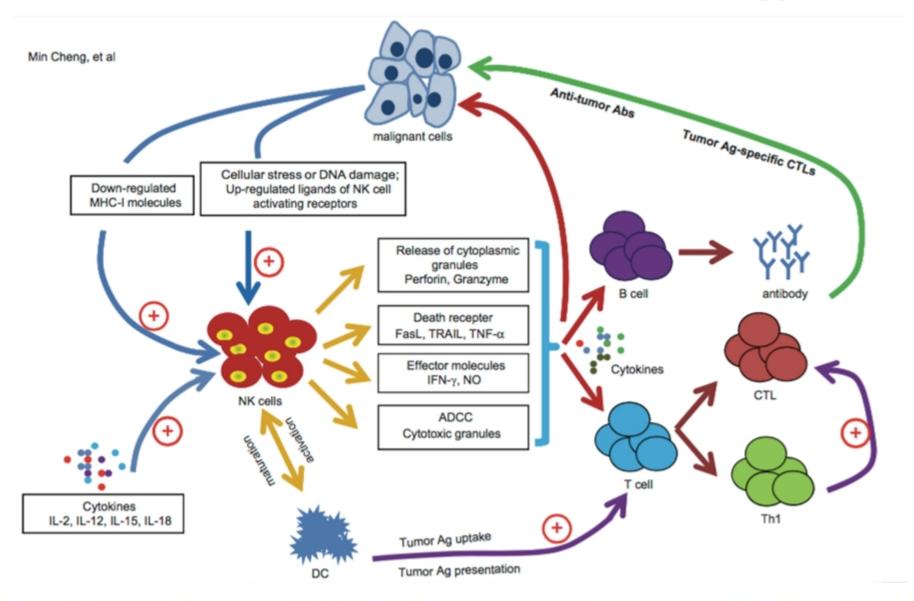




## Imunological studies in TKI stopping trials

|                                           | STIM                            | DADI trial                                                 | EURO-SKI                                                            | ISAV                                                       | TRAD                                             | STOP                                           | Case series                                            |
|-------------------------------------------|---------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| TKI                                       | Imatinib                        | 2 <sup>nd</sup> line<br>dasatinib                          | Imatinib<br>(small cohort<br>of 2 <sup>nd</sup> gen<br>TKI treated) | lmatinib                                                   | Imatinib/das<br>atinib (2 <sup>nd</sup><br>STOP) | Imatinib/<br>Imatinib+IFN                      | lmatinib                                               |
| Study group                               | French<br>(FiLMC)               | Japanese<br>CML study<br>group                             | Nordic and<br>German<br>CML study<br>groups                         | Italian                                                    | Canada                                           | Nordic CML<br>study group                      | Japanese/<br>Tokyo                                     |
| Patient<br>number in<br>clinical<br>study | 100                             | 88 (63)                                                    | >800                                                                | 36                                                         | Ongoing                                          | 12                                             | NA                                                     |
| Patient<br>number in<br>immunology        | 51                              | 59                                                         | 132 (50)/<br>122                                                    | 36                                                         | Ongoing                                          | 12                                             | 42 (10<br>patients<br>stopped)                         |
| Analysis                                  | Lymphocyte subsets and function | Lymphocyte subsets                                         | Lymphocyte<br>subsets and<br>function,<br>Dendritic<br>cells        | KIR (killer<br>immunoglob<br>ulin<br>receptor)<br>genotype | Lymphocyte<br>subsets and<br>function            | Lymphocyte<br>subsets and<br>function          | Lymphocyte subsets                                     |
| Publication                               | Rea et al,<br>ASH 2013          | Imagava et<br>al, Lancet<br>Haematol<br>2:e528-35,<br>2015 | llander et al,<br>ASH 2013-<br>2015<br>Burchert et al.<br>ASH 2015  | Caocci et al,<br>Exp<br>Haematol<br>2015                   | NA                                               | Koskenvesa<br>et al. Eur J<br>Haematol<br>2014 | Mizoguchi et<br>al, Cancer Sci<br>104:1146-53,<br>2013 |




## Imunological studies in TKI stopping trials

|                                    | STIM                                  | DADI trial                           | EURO-SKI                                                             | ISAV                                                    | STOP                                  | Case series                               |
|------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------|
| TKI                                | Imatinib                              | 2 <sup>nd</sup> line<br>dasatinib    | Imatinib<br>(small cohort<br>of 2 <sup>nd</sup> gen<br>TKI treated   | Imatinib                                                | Imatinib/<br>Imatinib+IFN             | Imatinib                                  |
| Patient<br>number in<br>immunology | 51                                    | 59                                   | 132 (50)/<br>122                                                     | 36                                                      | 12                                    | 42 (10 patients stopped)                  |
| Analysis                           | Lymphocyte<br>subsets and<br>function | Lymphocyte subsets                   | Lymphocyte<br>subsets and<br>function<br>(Nordic)<br>DCs<br>(German) | KIR (killer<br>immunoglobu<br>lin receptor)<br>genotype | Lymphocyte<br>subsets and<br>function | Lymphocyte subsets                        |
| Relapse<br>criteria                | MR4.5                                 | MR4.0                                | MR3.0                                                                | MR4.5                                                   | MMR                                   | CMR                                       |
| Positive predictors                | High NK count NK function impaired    | High NK count High NK LGLs Low Tregs | High NK count Low CD86 expression on DCs                             | KIR profile<br>(KIR A<br>haplotype)                     | ⇒ High NK count □                     | High NK count Effector memory CD8+T-cells |

NK cells: Effector cells? Modulator of CTL or other effector immune cell response? Only a marker?



### Role of NK cells in tumor immunology





### Moving TFR into clinical practice in CML

| Criteria                                                                   | GREEN                                         | YELLOW                                              | RED                 |
|----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|---------------------|
| Institutional criteria met (per Table 1)                                   | Yes                                           | -                                                   | No                  |
| Sokal score at diagnosis                                                   | Non-high                                      | High                                                | -                   |
| BCR-ABL transcript at diagnosis                                            | Typical -<br>B2A2 or B3A2<br>(e13a2 or e14a2) | Atypical, but<br>can be<br>accurately<br>quantified | Not<br>quantifiable |
| CML past history                                                           | CP only                                       | Resistance or<br>KD mutation                        | Prior AP or<br>BC   |
| Response to first line TKI therapy                                         | Optimal                                       | Warning                                             | Failure             |
| Duration of all TKI therapy                                                | >8 years                                      | 3-8 years                                           | <3 years            |
| Depth of deep molecular response                                           | MR4.5                                         | MR4.0                                               | Not in MR4.0        |
| Duration of deep molecular response monitored in a standardized laboratory | >2 years                                      | 1-2 years                                           | <1 year             |

ALL GREEN lights: strong recommendation to consider TKI withdrawal

ANY YELLOW lights: only consider TKI withdrawal in high priority circumstances (e.g. significant toxicity or planned pregnancy)

ANY RED lights: TKI withdrawal not recommended except in clinical trial



### Adverse events: TKI withdrawal syndrome?

- Musculoskeletal pain
- Joint pain
- Arthralgia
- Other

Musculoskeletal pain in CML patients after discontinuation of imatinib: a tyrosine kinase inhibitor withdrawal syndrome? *Richter J, et al. J Clin Oncol. 2014;32(25):2821-2823.* 

Tyrosine kinase inhibitor withdrawal syndrome: a matter of c-kit? Response to Richter et al. Rousselot P, et al. J Clin Oncol. 2014;32(25):2823-2825.

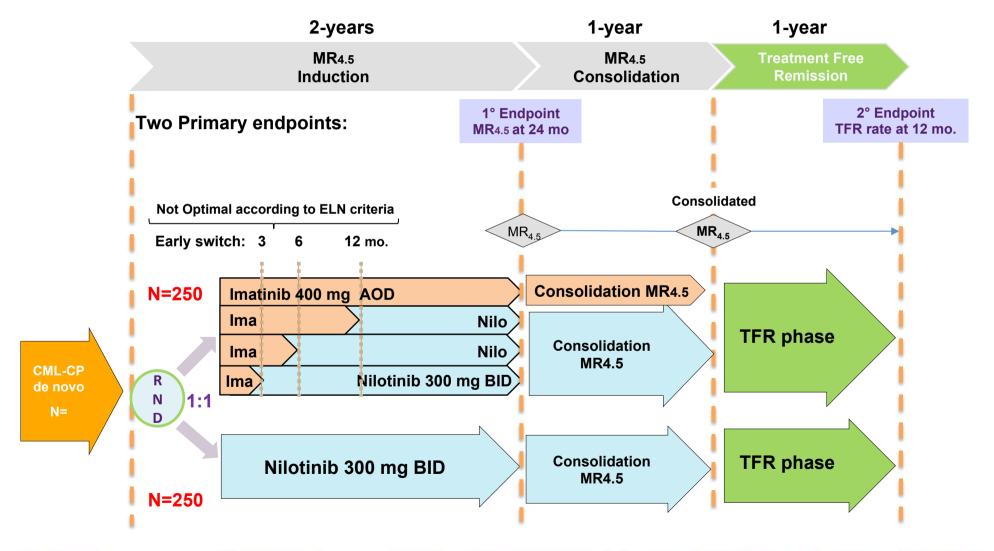


## Musculoskeletal Syndrome

|                               | Patients<br>with<br>AE grade 1-2 | %    | Patients<br>with AE<br>Grade 3 | %   | Total | %    |
|-------------------------------|----------------------------------|------|--------------------------------|-----|-------|------|
| Musculoskeleta<br>I symptoms* | 226                              | 29.7 | 9                              | 1.2 | 235   | 30.9 |

<sup>\*</sup>Musculoskeletal pain, bone and/or joint pain, arthralgia, muscle pain, myalgia, joint stiffness, lumbalgia, articular pain, muscular pain, neck pain, arthromyalgia, pain both arms, pain legs




## Treatment free remission Key issues remain under investigation

- Optimal frontline treatment strategy to achieve TFR
- Ideal duration of TKI therapy prior discontinuation
- Ideal depth and duration of molecular response
- Ideal criteria for reinitiating therapy
- Predictive factors for achieving deep molecular response
- Predictive factors for remaining in remission upon treatment discontinuation





## **Study Design**





### **Conclusions**

Is it possible to cure CML patients without Allo-SCT?

Yes, but....

- How many patients?
- Which treatment?
- QoL improvement?

## Thank you for the attention!

fabrizio.pane@unina.it

