Senescence and Cancer

Pier Giuseppe Pelicci

Milan, Italy

5° International Symposium on Secondary Leukemias and Leukemogenesis

Rome - September 22-24, 2016

Expression of activated oncogenes in normal cells induces DNA damage and activates a p53-dependent Checkpoint-response leading to Senescence or Apoptosis

In the absence of p53, oncogene expression induces transformation

In pre-tumoral lesions (lung, colon, prostate, bladder; melanomas, lymphomas): Oncogene expression correlates with accumulation of DNA damage and activation of the p53-checkpoint response

In model systems: Activation of the p53 checkpoint-response limits tumor progression

Oncogene expression in normal Hematopietic Stem Cells Induces DNA damage and a p21-dependent response that extends their replicative potential

Viale et al., Nature 2010

Why different oncogene-responses in different cells?

Hematopoietic progenitors: X-Rays induce p53-dependent apoptosis

PNAS, Insinga et al. 2013

Normal Hematopoietic Stem Cells Effects of X-ray treatment:

- Does not induce p53-dep apoptosis/senesc.
- Induces one round of symmetric division
- Activates DNA repair
- Dependent on p21 expression

Transient DNA-damage

Expansion of a pool of functional Stem Cells

Adaptive response to tissue damage

PNAS, Insinga et al. 2013

- DNA repair is never complete

Transient DNA-damage

PNAS, Insinga et al. 2013

- DNA repair is never complete
- After multiple DNA-damaging events or during aging: progressive accumulation of persistent DNA damage and loss of self-renewal (tumor suppression)

Normal Hematopoietic Stem Cells

have evolved a p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival (tumor suppression mechanism?)

Leukemia SCs: Effects of oncogene expression

- DNA-damage
- p21 constitutive activation
- Active DNA repair
- Extended self-renewal

In the absence of p21, leukemogenesis does not proceed

In the p21^{-/-} APLs, LSCs accumulate massive DNA-damage, hyperproliferate and are reduced in numbers

DNA damage

Hyper-proliferate

p21+/+

p21-/

LKS-

p=0.

p21+/

LKS+

80

70

10 0

re markedly reduce in numbers

In the absence of p21, LSCs hyperproliferate and progressively lose self-renewal

In the healthy mice transplanted with p21^{-/-} APLs, rare blasts are found in the PB, BM and spleen, which hyper-proliferate and do not show increased apoptosis

	% 5.2+ Ki67 <u>G1</u>	% 5.2+ Ki67 <u>G2/M</u>	% 5.2+ Casp3+
p21 ^{-/-} PR ki	64.5	27.3	2.7
PR ki	18.3	10.8	1.6

No leukemia after transplantation (0/5)

unpublished

In the absence of p21, LSCs hyperproliferate and progressively lose self-renewal

- Why the p21^{-/-} LSCs do not expand in vivo?
- Do they senesce?
- How are cleared in vivo?

Are cell-extrinsic mechanisms involved?

Alessandra Insinga

Olga Tanaskovic

Barbara Gallo

M. Vittoria Verga-Falzacappa

Manuscript in preparation

p21^{-/-} APLs "re-acquire" the ability to initiate leukemogenesis when transplanted into immunodeficient mice or into syngenic mice after γ-irradiation

Transplantation of p21^{-/-} APLs in immunodeficient mice is NOT due to facilitated homing or different growth potential in immunodeficient vs syngenic mice

p21-/- APL growth depends on the immunological status of the recipient

Macrophages and Monocytes of recipient mice are not involved in the immune-mediated clearance of p21-/- APLs

B and T-NK cells of recipient mice are not involved in the immune-mediated clearance of p21^{-/-} APLs

B1-8Δ (B-deficient) and CD1d (T-NK deficient) recipients injected with p21^{-/-} APLs

Are T-cells Involved in the clearance of p21^{-/-} APLs *in vivo*?

Priming: Immunocompetent C57 mice were exposed to leukemic blasts for 15 days

• T-Cell Transfer: T-cells were purified from spleens of primed mice and transferred into immunodeficient mice

•Challenge: T-cell transferred immunodeficient mice were injected with leukemia cells

T-cells primed with "WT APL" do not protect against p21^{-/-} or "WT APLs"

Challenge with p21-/- APLs

Challenge with WT APLs

T-cells primed with p21^{-/-} APLs protect against p21^{-/-} APLs

T cells primed with p21^{-/-} APLs protect against WT APLs

T cells primed with p21^{-/-} leukemia Protect against other AMLs (NPMc; FLT3ITD)

Challenge with NPM-AMLs (n=2) or FLT3-AMLs (n=2)

T cells primed with p21^{-/-} APLs do not protect against ALLs

Summary

Priming with p21-/- APLs generates T-cells that protect against wtAPLs and other AMLs (do not against ALLs)

The effector T-cells are CD4⁺

P21-/- APLs activate a population of anti-leukemia CD4+ lymphocytes

Do p21-/- blasts express surface proteins that activates a CD4+ specific anti myeloid-leukemia response?

Experimental approach:

RNAseq of primary p21-/- vs WT APL blasts (n=12)

High expression-variability among APL samples of several gene-candidates

Does the p21-/- "micro-environment" activate a CD4+ specific anti myeloid-leukemia response?

Exposure of wt APLs to the p21-/- "micro-environment" protects from leukemia development

WT APLs

A cellular component of the p21-/- micro-environment (spleen or bone marrow)

is sufficient to protect mice from leukemia development

WT APLs

Monitoring of leukemia growth and survival

	Leukemia
P21-/- APL	8/8
P21-/- APL + <u>5x10⁶</u> p21-/- Splenocytes	0/7
P21-/- APL + <u>5x10⁶</u> p21-/- BM cells	0/7
P21-/- APL + <u>5x10⁶</u> p21-/- Splenocytes	2/2
P21-/- APL + <u>5x10⁶</u> p21-/- BM cells	2/2

Depletion of macrophages from the p21-/- micro-environment rescues the growth potential of WT APLs

Addition of purified p21-/- macrophages (from the bone marrow) protect from leukemia development

WT APLs

Monitoring of leukemia growth and survival

L	.eukemi	а
WT APL	2/2	
WT APL + WT Mac	4/5	
WT APL + p21-/- Mac	0/5	

Preparation of Macrophages form the Bone marrow: 6 days culture in adherent conditions of Ly6g^{neg} and CD11b^{pos} BM cells

BREAST CANCER: A role for p21 in the immune-mediated clearance of breast cancer?

p21^{-/-} breast cancer cells do not transplant in syngeneic mice

p21^{-/-} breast cancer cells re-acquire the ability to initiate tumorigenesis when transplanted in the mammary gland of immunodeficient mice

In vivo role of macrophages in mammary tumor growth

1. Depletion of macrophages restores p21-/- breast cancer transplantability

	FVB		P21-/-	
p21 -/- I In toto	ErbB2 -CD11b	RECIPIENT	BREAST CANCER CELLS	ENGRAFTMENT
		FVB <i>Syngenic</i>	ΙΝ ΤΟΤΟ	0/5
Syngenic mouse	mouse	FVB <i>Syngenic</i>	–CD11b	4/5
↓ <u>NO</u> CANCER	↓ <u>CANCER</u>			

.....

CD4+ T-Cells primed with WT tumor-cells do not proliferate after in vitro challenging with WT tumor-cells

The presence of p21-/- tumors-cells (either as priming or challenging cells) induces CD4+ proliferation

Depletion of Macrophages inhibits CD4+ T-Cell proliferation

NAÏVE CD4+ T-Cells do NOT proliferate *in vitro* after challenging with WT ErbB2 cells

NAÏVE CD4+ T-Cells proliferate *in vitro* after challenging with WT ErbB2 cells and addition of p21-/- Macrophages

Increased "activation" of p21-/- macrophages under steady-state conditions (BI6 mice)

Natoli et al.

	MHC II		Ly6c	
	%	MF	%	MF
WT	59.46	1.96	22.90	3.47
p21-/-	88.90	2.11	4.39	1.74

Higher numbers of Macrophages in p21-/- ErbB2 breast cancers

WT

ErbB2 mammary tumors

FACS analysis of wt and p21-/-ErbB2 tumors (-organoids)

Journal of Clinical Investigation

p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β

Gorjana Rackov,1 Enrique Hernández-Jiménez,2 Rahman Shokri,1 Lorena Carmona-Rodríguez,1 Santos Mañes,1 Melchor Álvarez-Mon,3 Eduardo López-Collazo,2 Carlos Martínez-A,1 and Dimitrios Balomenos1

First published July 18, 2016 -

p21 is a negative regulator of macrophage activation

Myeloid LSC p21-/- macrophages: Increased numbers and • activation at steady-state and after challenge with tumoral cells Up-regulation of MHC Class II ٠ and down-regulation of Ly6C increased phagocytosis ٠ (apoptotic cell) (Circulation. 2004;110:3830) **CD4**⁺ increased LPS-dependent ٠ induction of TNF-a and IL-1b P21-/-**T-cell** (Eur. J. Immunol. 2009; 39: 676; Eur. J. Immunol. 2009; 39:683) Macrophage

Addition of an αMHCII blocking-Ab inhibits CD4+ T-Cell proliferation

CD4+ T-Cells primed with p21-/- APL proliferate *in vitro* after challenging with APL cells and are inhibited by addition of an α MHCII blocking-Ab

CFSE

The MHC Class-II subpopulation of p21-/- APL grows in syngeneic mice

Leukemia SCs must evade a macrophage-dependent Immune-surveillance mechanism

Initiating Oncogenes (AML1-ETO; PML-RAR)

Macrophage activation (by p21 attenuation) Activates an anti-tumor immune response

Initiating Oncogenes (AML1-ETO; PML-RAR)

Do Macrophages mediate clearance Of damaged Hematopoietic Stem Cells?

Transient DNA-damage

DNA damage Continuous DNA-damaging events p2 Aging Self renewal Мо