

Differences between Secondary Leukemia and Therapy-related Leukemia

Richard A. Larson, MD The University of Chicago

Differences between Secondary Leukemia and Therapy-related Leukemia

Is this just a matter of definitions?

FIFTH

INTERNATIONAL SYMPOSIUM ON SECONDARY LEUKEMIA AND LEUKEMOGENESIS

HONORARY PRESIDENT: GIUSEPPE LEONE CONGRESS ORGANIZERS: FRANCESCO LO COCO, LIVIO PAGANO, MARIA TERESA VOSO

> ROMA, SEPTEMBER 22-24, 2016 NH Collection Vittorio Veneto Hotel

Disclosures of Richard A. Larson, MD

Company name	Research support	Employee	Consultant	Stock holder	Speakers bureau	Advisory board	Other
Ariad							DSMB
Astellas	X						
BristolMyers							DSMB
Celgene	X		X				DSMB
CVS			X				
Daiichi Sankyo	X						
Erytech	X		X				
Novartis	X		X				
Pfizer			X				

Secondary leukemia & t-MN

- Do these syndromes have distinct clinical features?
- Does it matter?
- What are the features that overlap?

Secondary leukemia & t-MN

- Do these syndromes have distinct clinical features?
- Does it matter?
- What are the features that overlap?
- Moving from morphology to genetic subclassification for better treatment decisions.

Secondary leukemia & t-MN

All roads lead to Rome.

What does WHO mean that t-MN is a distinct entity?

- WHO combines patients with morphologic features of MDS, MDS/MPN, and AML.
- Any patient who has previously received a DNA-damaging agent for a previous <u>non-myeloid</u> disorder.
- No arbitrary limits on the duration or intensity of exposure.
- No minimum or maximum limits on the latency period.

What does WHO mean that t-MN is a distinct entity?

- WHO combines patients with morphologic features of MDS, MDS/MPN, and AML.
- Any patient who has previously received a DNA-damaging agent for a previous <u>non-myeloid</u> disorder.
- No arbitrary limits on the duration or intensity of exposure.
- No minimum or maximum limits on the latency period.
- Since t-MN overlaps with primary myeloid neoplasms, these patients should be treated according to their cytogenetic and molecular features and clinical risk factors (ideally on front-line clinical trials).

Why retain therapy-related myeloid neoplasms as a distinct subgroup?

- To highlight an increasingly common, late complication of cytotoxic chemotherapy and radiation.
- To learn about the effect of mutagenic exposures on humans.
- To identify patients at risk and monitor them for early intervention.
- To discover the pathways of leukemogenesis that will likely apply to primary MDS and *de novo* AML as well as to t-MN.

Areas of confusion and debate in defining "therapyrelated" myeloid neoplasms

- What exposures are leukemogenic?
- Is there a minimum dose or exposure required to be leukemogenic?
- Is there a minimum latency? How quickly can leukemia develop after exposure?
- Is there a maximum latency? When does the risk of leukemia drop to the population baseline?

Which exposures are leukemogenic?

- Alkylating agents
- Topoisomerase II inhibitors
 - Doxorubicin, etoposide, teniposide, mitoxantrone, actinomycin D
- Antimetabolites
 - Thiopurines (azathioprine, mercaptopurine, thioguanine)
 - Mycophenolate mofetil
 - Fludarabine
- Radiotherapy
 - Large fields containing active marrow; low doses
- Autologous hematopoietic stem cell transplantation
 - Genotoxic and proliferative stress

Are these exposures also leukemogenic?

- Other chemotherapy agents
 - Hydroxyurea, vinca alkaloids, L-asparaginase, interferon
 - Methotrexate
 - Radio-isotopes (¹³¹I, ³²P, Bexxar, Strontium-89)
- Hematopoietic growth factors
 - G-CSF (severe congenital neutropenia; adjuvant chemotherapy)
 - Androgens
- Environmental exposures
 - Smoking
 - Benzene-associated hematotoxicity
 - Radiation accidents (Chernobyl); Radon gas
 - Cosmic rays (commercial jet pilots; astronauts)
 - Diet (flavanoids)
 - Electromagnetic fields

Therapy-related myeloid neoplasms after only methotrexate exposure

Age/ Sex	Primary disease	Dysplasia	BM Cellularity	BM Blasts	Cytogenetics	Survival
78F	RA	Mega	30%	2%	del(11)(q23q25)	20+ mos
63F	SLE	Trilineage	80%	14%	del(5q),-7,t(12;17)	3 mos
86F	RA	Trilineage	70%	22%	del(5q),-7	4 mos
66M	RA	Gran; Mega	60%	6%	46,XY → -7	20+ mos
51F	RA, SLE	Gran; Mega	70%	10-22%	46,XX	7 mos
58M	Psoriasis	Gran; Mega	80%	55%	+8	14 mos
67F	RA	Gran; Mega	75%	35%	Complex	18 mos
58F	RA	Trilineage	50%	5%	+8	2+ mos
72F	RA	Ery; Mega	70%	13%	46,XX	1+ mos

THE UNIVERSITY OF CHICAGO MEDICINE

Data provided by Dr. John Anastasi, University of Chicago Secondary AML and t-AML

given during the first year post-transplant

Offman et al. Blood 2004; 104: 822

THE UNIVERSITY OF CHICAGO MEDICINE

Inherited mutations in breast cancer susceptibility genes

47 patients with therapy-related leukemia after treatment for breast cancer

Churpek et al. Cancer 2016; 122: 304

THE UNIVERSITY OF

CHICAGO MEDICINE

What is "Secondary" Leukemia?

- AML that follows previously diagnosed MDS
- AML with myelodysplasia-related changes
- AML that follows a myelodysplastic/myeloproliferative disorder, such as CMML
- Terminal blast phase of primary myelofibrosis or other myeloproliferative neoplasm (but not CML)
- AML that follows aplastic anemia or other antecedent hematologic disorder
- AML that follows chemo-radiotherapy (i.e., t-MN) or occupational exposures (e.g. benzene)

Danish National Population-based Study (2000-2013: 2249 patients had *de novo* AML)

THE UNIVERSITY OF CHICAGO MEDICINE

Ostgard et al. J Clin Oncol 2015; 33: 3641

Danish National Population-based Study: Survival after intensive therapy

Ostgard et al. J Clin Oncol 2015; 33: 3641

Secondary AML and t-AML

UK's population-based Haematological Malignancy Research network 2004-2015

Malignancy	No. of patients	Median age (yrs)	Incidence/ 100,000	5-Yr Survival
All AML:	1411	71	4.39	15%
AML with Myelodysplasia- related changes	197	77	0.61	3%
t-AML	61	72	0.19	3%
All MDS:	1194	76	3.72	28%
MDS with Excess Blasts	458	75	1.43	10%
MDS/MPN	296	77	0.92	17%

UK's population-based Haematological Malignancy Research network 2004-2015

THE UNIVERSITY OF Roman et al. Cancer Epidemiol 2016; 42:186 CHICAGO MEDICINE Second

UK's population-based Haematological Malignancy Research network 2004-2015

Patients with t-AML and AML with myelodysplasia-related changes had equally poor outcomes.

21

Secondary AML in the Swedish Registry, 2015

De novo AML = 2472 (73%) AHD- AML = 630 (19%) [Antecedent hematologic disorder = 440 with prior MDS + 226 prior MPN]

t-AML = 259 (8%)

THE UNIVERSITY OF CHICAGO MEDICINE Hulegardh et al. Am J Hematol 2015; 90: 208

Secondary AML in the Swedish Registry, 2015

De novo AML = 2472 (73%) AHD- AML = 630 (19%) [Antecedent hematologic disorder = 440 with prior MDS + 226 prior MPN]

t-AML = 259 (8%)

Somatic gene mutations are enriched in clonal hematopoietic disorders

Link & Walter. Leukemia 2016; 30: 1633.

THE UNIVERSITY OF CHICAGO MEDICINE

Two diseases or only one with progression?

- The term "secondary" leukemia implies that there is a difference between the antecedent disorder and the leukemia.
- Alternatively, secondary leukemia may be a single disease with a continuum of increasing dysplasia and decreasing myeloid maturation, until the myeloblasts exceed 20%.

- "Blast phase of MDS"

Does early (t-MDS) differ from later t-MN (t-AML)?

- Are there differences at the two ends of the spectrum?
 - Percentage of blasts
 - Cytogenetic abnormalities
- Do morphological subsets make a difference in t-MDS?

• Or is t-MDS a spectrum of clinical presentations and biological features rather than multiple distinct subsets?

Cytogenetics of t-MDS and t-AML (n=155)

Karyotype	t-MDS (n = 86) [<20% blasts]	t-AML (n = 69) [≥ 20% blasts]
Normal:	10 (12%)	6 (9%)
Abnormalities of chrom. 5, 7, or both (+/- others):	64 (74%)	38 (55%)
Balanced translocations:	0	11
t(11q23)		6
t(8;21)		2
inv(16)		2
t(15;17)		1
Other abnormalities:	12	14
Complex (<u>></u> 3 abnormalities)	41 (48%)	35 (51%)

THE UNIVERSITY OF CHICAGO MEDICINE ZN Singh et al. Am J Clin Pathol 2007; 127: 197-205 Secondary AML and t-AML

Cytogenetics of t-MDS and t-AML (n=155)

Karyotype	t-MDS (n = 86) [<20% blasts]	t-AML (n = 69) [≥ 20% blasts]
Normal:	10 (12%)	6 (9%)
Abnormalities of chrom. 5, 7, or both (+/- others):	64 (74%)	38 (55%)
Balanced translocations:	0	11
t(11q23)		6
t(8;21)		2
inv(16)		2
t(15;17)		1
Other abnormalities:	12	14
Complex (<u>></u> 3 abnormalities)	41 (48%)	35 (51%)

THE UNIVERSITY OF CHICAGO MEDICINE ZN Singh et al. Am J Clin Pathol 2007; 127: 197-205 Secondary AML and t-AML

Among patients with t-MDS, morphologic subclassification may not be clinically relevant.

ZN Singh et al. Am J Clin Pathol 2007; 127: 197-205

THE UNIVERSITY OF CHICAGO MEDICINE

Secondary AML and t-AML 2

29

Cytogenetic features are clinically relevant in t-MDS.

ZN Singh et al. Am J Clin Pathol 2007; 127: 197-205

THE UNIVERSITY OF

CHICAGO MEDICINE

Survival is similar for t-MDS and t-AML, except for patients with balanced rearrangements.

ZN Singh et al. Am J Clin Pathol 2007; 127: 197-205

THE UNIVERSITY OF CHICAGO MEDICINE

Who is at risk?

- An entirely stochastic event (happening by chance)
 - Age-related
- A mutational event or series of mutations entirely due to a specific DNA damaging agent
- Selection for a mutator phenotype (mismatch repair deficiency)
- Germline genetic factors that impact an individual's susceptibility to DNA damage
 - Hereditary cancer susceptibility: *TP53, BRCA1, BRCA2, FANC*
 - Inactivating polymorphisms
- A host susceptible to development of myeloid neoplasms regardless of exposure: RUNX1, DDX41, CEBPA, TERC, TERT, GATA2, ANKRD26, ALA2, RPS

Acknowledge biologic differences; emphasize clinical similarities

- Leukemia is the terminal phase of a number of clonal hematopoietic disorders.
 - Neoplastic, malignant, progressive
- There are different initiating events to be discovered.
- These leukemias share common clinical and biologic features.
- Unfortunately, they share poor outcomes overall.
- Move from morphology to genetic subclassification.
 - Drug development should focus on blocking common pathways of progression.

Thank you!

