Molecular Analysis of del(5q) t-MN: Identification of Haploinsufficient Tumor Suppressor Genes

Michelle M. Le Beau, PhD University of Chicago

THE UNIVERSITY OF CHICAGO MEDICINE

Comprehensive Cancer Center

Outline of Talk

- Review of Tumor Suppressor Genes on 5q haploinsufficiency of multiple genes
- Modeling t-MN in mice
- Role of aberrant WNT signaling in both the BM niche and HSCs in driving myeloid leukemogenesis
- Therapeutic targeting of Wnt Signaling
- Role of cytotoxic therapy alters both the BM niche and HSCs

Haploinsufficiency Drives del(5q) Disorders

- Two Commonly Deleted Regions (CDRs):
 - > 5q31.2
 - > 5q33.1

- No homozygous mutations
- Many genes in CDRs are expressed at ~50% levels (Haploinsufficient)
 - Loss of multiple genes contribute to disease:

Phenotype	Gene(s)
Anemia	RPS14, APC
Megakaryocytic Dysplasia	miR145/146a
HSC expansion	EGR1, APC, CSNK1A1
Clonal Dominance	CSNK1A1

Critical Genes in del(5q) t-MNs

EGR1 (5q31.2)

Transcriptional regulator of *CDKN1A* (*p21*), *TP53*

HSC quiescence and retention in BM niche

Egr1^{+/-} mice, treated with ENU, develop a MPD with ineffective erythropoiesis.

Joslin et al., Blood 110: 719, '07

APC (5q22.2)

WNT signaling cascade

Regulates mitosis and cell migration

Mx1-Cre+, Apc^{del/+} mice develop MDS, fatal macrocytic anemia

TP53 (17p13.1)

Cell cycle arrest, DNA repair and apoptosis

Loss of *TP53* activity observed in up to 80% of t-MN with a del(5q).

MDS in Apc^{del/+} Mice

Wang et al. Blood 115:3481, 2010 Stoddart et al., Blood 123: 228, 2014 Stoddart et al., Blood 123:1069, 2014

Role of WNT Signaling in Hematopoiesis

BM Microenvironment – WNT Signaling:

- Regulates differentiation/function of osteoblasts
- Constitutive: leads to AML in mice (*Ctnnb1 osb*)
- Activated in osteoblasts, MSCs in some MDS/AML

HSPCs – WNT Signaling:

- Essential for self-renewal and quiescence
- Exquisitely sensitive to levels of signaling
- Involved in development of LICs
- Activated in multiple subtypes of MDS/AML

MDS is Induced by an *Apc*-Haploinsufficient BM Microenvironment

Conclusions-1

2. Cytotoxic therapy accelerates the onset of myeloid diseases, likely impacting the niche and HSPCs.

Is Apc loss Mediated by the WNT Pathway:

Heterozygous loss of β -catenin gene (*Ctnnb1*) is sufficient to prevent development of fatal MDS in *Apc*^{del/+} mice

Transplantation of WT Bone Marrow:

Cell extrinsic loss of one copy of Ctnnb1 delays disease development in Apc^{del/+} mice

Pyrvinium Tosylate inhibits WNT activity by activating $CK1\alpha$ (CSNK1A1)

- In the absence of WNT signaling, APC destruction complex proteins, CK1α (casein kinase) and GSK3, phosphorylate (P) β-catenin in a coordinated fashion.
- β-catenin is then recognized by β-Trcp, an E3 ubiquitin ligase subunit and targeted for proteasomal degradation.
- Pyrvinium binds to and activates CK1α, leading to βcatenin degradation and inhibition of WNT activity

<u>Pyrvinium Tosylate (PT), an Inhibitor of Wnt</u> Signaling, Prevents Disease in Apc^{del/+} Mice

Pyrvinium Tosylate Prolongs Survival in Apc^{del/+} Mice That Have Developed Anemia

Canonical WNT Regulates Hematopoiesis in a Dosage-Dependent Fashion

Conclusions-2

- Apc function in BM niche and HSPCs is through the WNT signaling pathways. Inhibition of WNT signaling using genetic models (*Ctnnb1*^{+/-}) rescues the MDS phenotype.
- Pharmacological inhibition of the WNT pathway (Pyrvinium tosylate) appears to prevent the development of MDS and anemia.
- Targeting the WNT pathway may be an effective therapeutic approach in human MDS, AML, and t-MN.

WNT Signaling Signature in del(5q) t-MNs

Stoddart et al., Blood 126:2899. 2015

0.5 Value

Loss of *p53*, in the Context of *Egr1* and *Apc* Haploinsufficiency, Promotes AML Development

AMML, KIT⁺, MPO⁺, (234 days, #1586)

Genetic Instability:

- Complex karyotype
- Aberrant DSB response

Stoddart et al., Blood 123:1069, 2014

Conclusions-3

Effect of Cytotoxic Therapy

HSCs:

- Induces mutation(s) in HSCs.
- Setting of pre-existing mutations in HSCs, e.g., *TP53 (Wong TN et al. Nature 518:552, 2015)*
- Eliminates HSCs, but rare mutant stem cells survive.
- Permits acquisition of 2° mutations -> leukemogenesis.

and/or

BM Niche:

- Creates a permissive stromal cell niche enabling the survival and expansion of the rare mutant HSC clone
 - > Epigenetic alterations?
 - > Cytokine secretion?
 - Altered adhesion?
 - Changes in oxidative stress?

Alkylating Agent (ENU) Exposure Significantly Increases ether incidences of Disease

Loss of p53 is Critical for the Development of AML

7135 Bone marrow

Increased Severity and Earlier Onset of Disease with Loss of More than one del(5q) Gene

Effects of Alkylating Agents on HSPCs and the BM microenvironment

ENU Treatment of HSPCs and BM niche Promotes Expansion of *p53* shRNA-GFP⁺ Cells

Major Gene Ontology Categories Over-Represented in List of Mutated Mouse Genes

White text identifies genes mutated in human MDS/AML

CONCLUSIONS-4

- Egr1 and Apc haploinsufficiency promotes the development of MDS and AML
- Severity of disease increases with loss of >1 5q gene and loss of p53
- Loss of p53 is critical for leukemic transformation
- t-MN development is likely promoted by the effects of alkylating agent therapy on both the HSPCs and the BM niche

Pathways to t-MN

University of Chicago

Angela Stoddart, PhD Elizabeth Davis Anthony Fernald Jianghong Wang, MD Jason Cheng, MD, PhD Megan McNerney, MD, PhD

MSKCC Scott Lowe, PhD

Washington Univ

J. Milbrandt, MD, PhD

Richard Larson, MD John Anastasi, MD David Young, MD, PhD Zhijian Qian, PhD Rachel Bergerson, PhD Chunmei Hu, MD, PhD

UCSF

Kevin Shannon, MD Scott Kogan, MD

SJCRH

James Downing, MD Joy Nakitandwe, PhD Jinghui Zhang, PhD

Patients at UCM Support: NCI, LLS, NASA, Edward P. Evans Foundation