Primary Mediastinal Lymphoma I-II-II Generation Regimens

Andy Davies

3rd Postgraduate Lymphoma Conference

Rome

March 2017

Recurrent gene alterations in PMBL

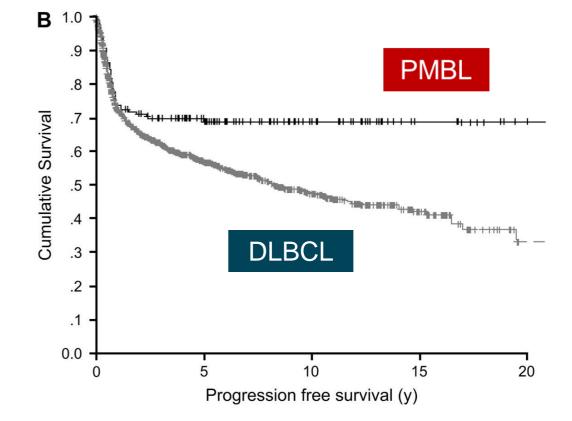
Gene	Pathway/function	Frequency %
Copy number gain		
REL	NF-κB pathway	75
PDL1/PDL2	Induction of T-cell exhaustion/apoptosis	63
JAK2	IL/JAK-STAT pathway/histone modification	63
JMJD2C	Histone modification	63
Chromosomal translo	cation/rearrangement	
CIITA	Transcriptional regulation of HLA class II/antigen presentation	38
Coding sequence mut	ation	
SOCS1	IL/JAK-STAT pathway	45
STAT6	IL/JAK-STAT pathway	36
TNFAIP3	NF-кB pathway	36
MYC	Transcriptional regulation/chromatin remodeling	25
TP53	p53 pathway	13
Promoter hypermethy	lation	
p16/INK	Cell-cycle progression, p53 pathway	9

Management

- Almost all cures will come from initial therapy: we need to be certain we are doing it right
- Outcomes following recurrence are poor
- Third generation CHOP like schedules appear superior to CHOP
- The addition of rituximab enhances activity of chemotherapy
- Impressive results with DA-EPOCH-R without IFRT (small series uncontrolled)

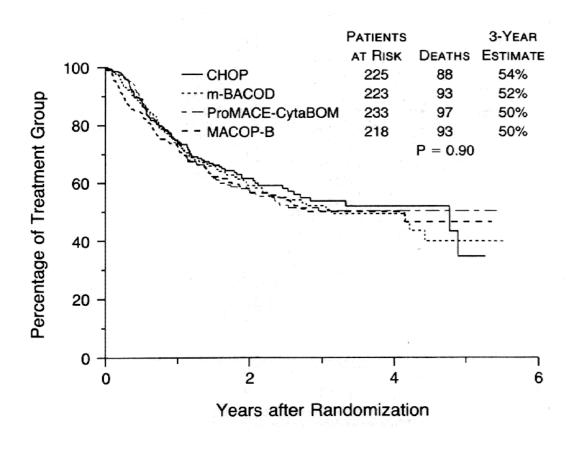
'Primary mediastinal large B-cell lymphoma (PMBL) is probably a distinct entity. R-CHOP 21 is not established as the definitive treatment option and radiotherapy remains controversial.'

H. Tilly, M. Dreyling and On behalf of the ESMO Guidelines Working Group. Ann Oncol (2010) 21 (suppl 5): v172-v174.


ESMO PMBL Guidelines..2016

Primary mediastinal lymphoma	Treatment	Consolidation	CNS Prophylaxis
	R-CHOP or R-V/MACOP-B or R-CHOP14 or DA-EPOCH-R	Mediastinal RT (30 Gy) in responding patients; RT could be omitted in CMR only after DA- EPOCH-R HDCT/ASCT is not recommended in CR1	: Not recommended

Esmo Guidelines. Vitolo et al. 2016


Outcomes superior to DLBCL

Almost all recurrences within first 12-18 months

Savage, K. J. et al. Ann Oncol 2006 17:123-130

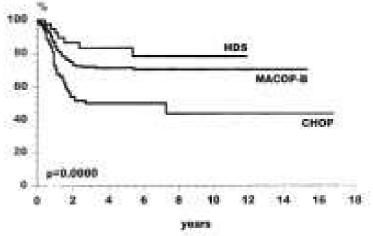
Therapy...evolution of regimens

No difference in SWOG study for aggressive lymphomas

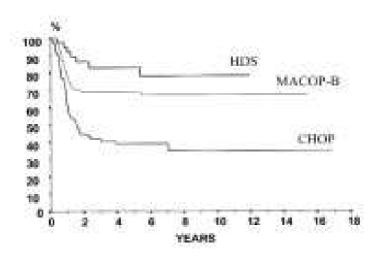
These results may mask underlying differences for PMBL as not recognised as distinct entity

Fisher et al 1993

But...More intensive chemotherapy may be superior in PMBL

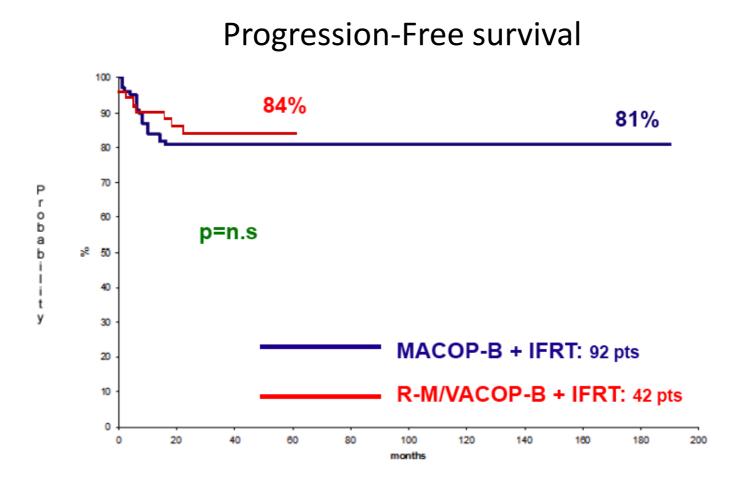

Zinzani et al 2002

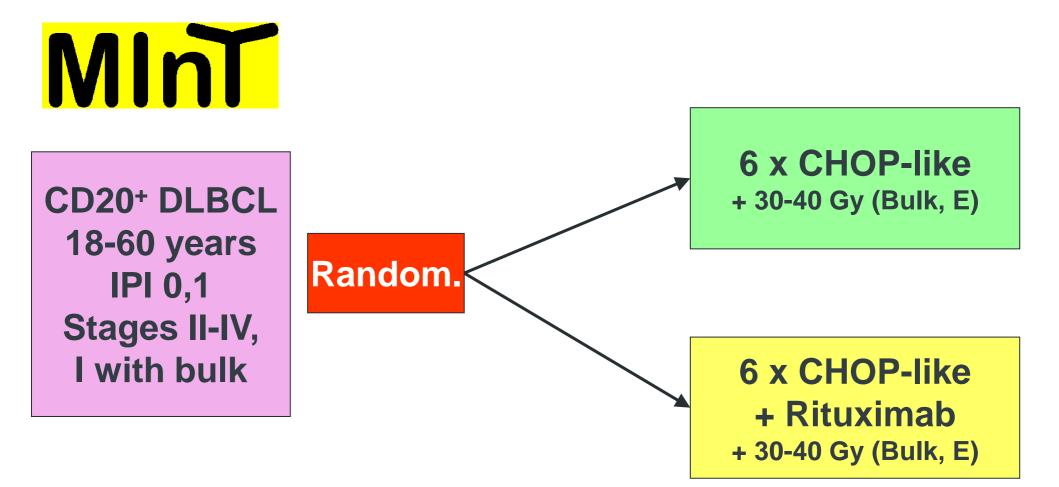
Multinational retrospective (n=426), three different chemotherapeutic approaches


10yr OS	СНОР	44%
	3 rd Generation	71%
	high-dose77%	

Italian multicentre retr	ospective (n=138)
CHOP (n=43)	CR 51%
MACOP-B (n=95)	CR 80%

Overall survival with three different chemotherapeutic approaches

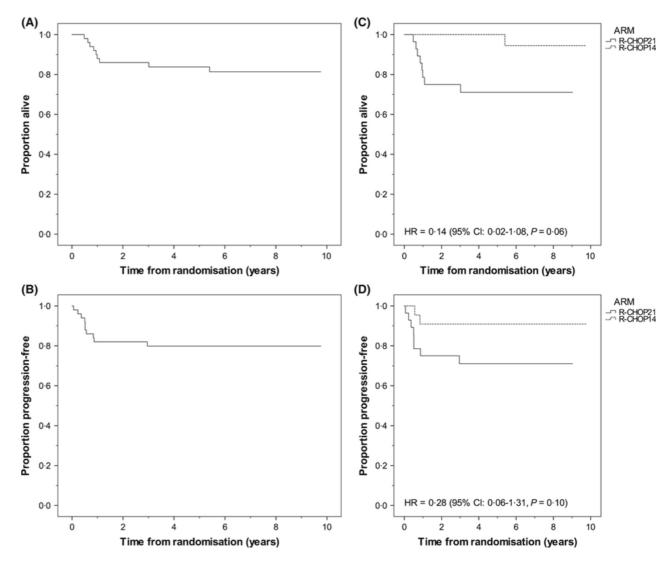



Progression free survival with three different chemotherapeutic approaches

What is the role of rituximab?

Italian Series comparing weekly +/- Rituximab

De Sanctis et al. Int J Radiation Oncology Biology Physics 2008; 72:1154-60 Martelli et al. Ann Oncol. 2008 Jun;19 Suppl 4



Rieger M et al. Ann Oncol 2011;22:664-670

R-CHOP 14/21: PMBL sub-group analysis

Subgroup analysis of R-CHOP 14-21 n=50

- R-CHOP is very effective
- Observation that less events in R-CHOP-14 : biology?
- Mutli-centre and older population
- Results lie in 95% CI of DA-EPOCH-R
- RT in 58%

Gleeson et al. BJH 2016

Table 2

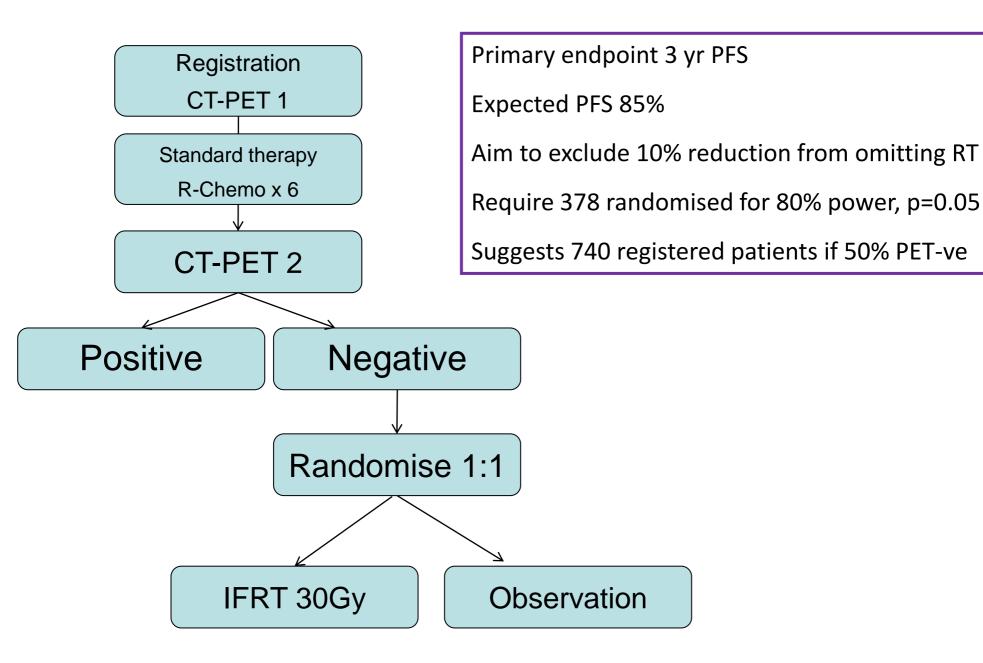
Summary of the published experience with primary mediastinal B-cell lymphoma patients with chemoimmunotherapy combinations

Author, Year	Treatment	Patients	CR, %	PFS or RFS, %
Savage et al, ⁷ 2006	R -CHOP \pm RT	18	n.r.	82 (60 mo)ª
Zinzani et al, ²⁷ 2009	R-M(V)ACOP-B	45	80	88 (60 mo)
Moskowitz et al, ⁴⁰ 2010	R-CHOP/ICE	54	n.r.	78 (36 mo)
Rieger et al, ²⁴ 2011	R-CHOP	44	52	78 (78 mo)
Vassilakopoulos et al, ²⁵ 2012	$\begin{array}{l} CHOP \pm RT \\ R\text{-}CHOP \pm RT \end{array}$	45 76	n.r. n.r.	47 (60 mo) 80 (60 mo)
Dunleavy et al, ²⁹ 2013	DA-EPOCH-R	51	96	93 (60 mo)
Soumerai et al, ²⁶ 2014	R-CHOP	63	71	68 (60 mo)
Savage et al, ⁴³ 2012	R-CHOP ± RT • R-CHOP ^b • R-CHOP + RT ^c	59 33 26	— n.r. n.r.	— 78% (60 mo) 83% (60 mo)
Zinzani et al, ⁴⁴ 2015	R-MACOP-B ± RT • R-MACOP-B ^b • R-MACOP-B + RT ^c	74 23 51	82 100 75	91 (113 mo) 90 (68 mo) 91 (113 mo)
Martelli et al, ⁴¹ 2014	R-CHOP/M(V)ACOP-B ± RT • Negative PET ^d • PET > Deauville 2 • PET > Deauville 3	115	— 100 82 68	— 98 (60 mo) 82 (60 mo) 68 (60 mo)

Zinzani and Brocoli 2016

Is consolidation radiotherapy required?

Radiotherapy may improve the quality of response


	CR after Chemo	PR to CR with RT	Global CR
First generation	49%	67%	61%
Third generation (<i>eg</i> MACOP-B)	51%	84%	79%
High-dose	53%	77%	75%
Overall	51%	81%	74%

Zinzani et al 2002

•The impact on cure rates is unclear, although several older series suggest that this is favourable

•Concerns regarding long term toxicity (cardiovascular and second malignancy)

The new IELSG 37 trial

DAEPOCHR 50303: Limited real life escalation

		R-CHOP	DA-EPOCH- R	P-value
Completed per p	protocol*	85.9%	79%	0.037
PD during treatm	nent	2.7%	1.5%	0.361
Early discontinua	ation due to AE	1.5%	6.5%	0.004
Max DA-EPOCH	I-R Dose level			
1			28%	
2	20% ↑		20%	
3	44% ↑		23%	
4	73% ↑		17%	
5	107% ↑		9%	
6	149% ↑		2%	
7	200% ↑		<1%	

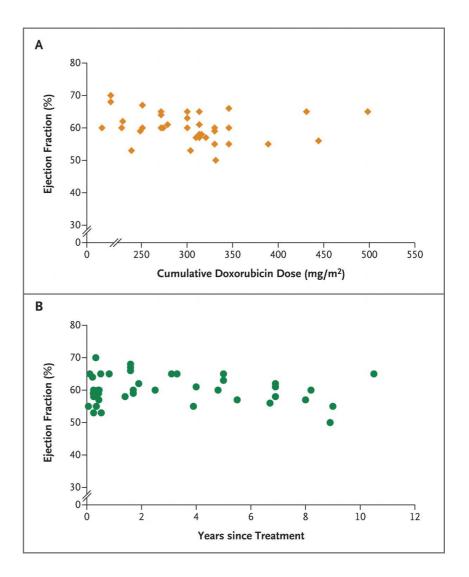
Wilson et al. ASH 2016

50303 Grade 3-5 Toxicities

Event	R-CHOP	DA-EPOCH-R	P-value
Treatment related deaths*	2%	2%	0.975
ALL Gr 3-4	76.3%	96.5%	<0.001
Hematologic	73.1%	97.7%	<0.001
Non-Hematologic	41.3%	70.9%	<0.001
ANC	68%	96%	<0.001
Platelets	11%	65%	<0.001
Febrile neutropenia	17%	35%	<0.001
Infection	11%	14%	0.169
Mucositis	2%	6%	0.011
Neuropathy - sensory	2%	14%	<0.001
Neuropathy - motor	1%	8%	<0.001

* Treatment related deaths (10 total, 5 in each arm)

- R-CHOP CHF (1), CNS bleed (1), infection (1), F/N (1), unknown (1)
- DA-EPOCH R infection (2), MI (1), unknown (2)


Wilson et al. ASH 2016

Fertility

- Impact uncertain
- No doubt escalated cyclophosphamide dosing associated with impaired gonadal function
- From NCI cohort. Of 23 patients, 75% returned to mestruration with 6/20 pts having healthy deliveries. In 6 pts >40 yrs all premature menopause (Dunleavy Blood 2013; 122: 1779)

Cardiac function

 What is long-term impact of escalated doxorubicin dosing on cardiac function?

Dunleavy et al NEJM 2013

R-DA-EPOCH for PMBL

• How representative was the NIH data?

• Does it translate into the 'real-world'?

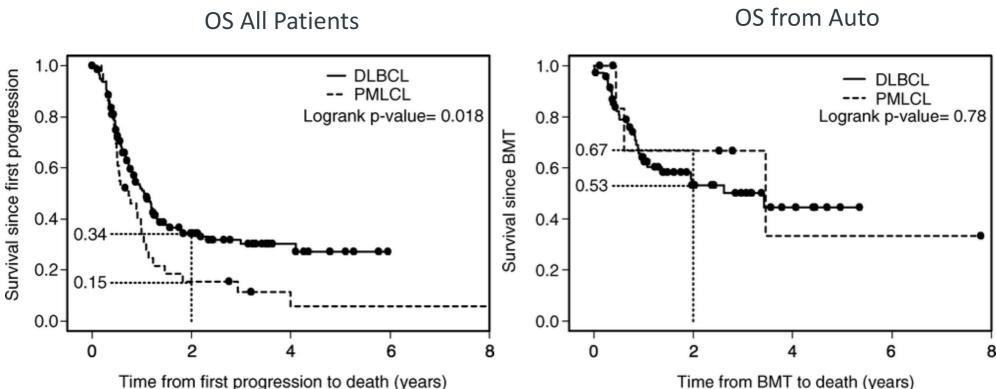
• Can we be confident in their RT strategy?

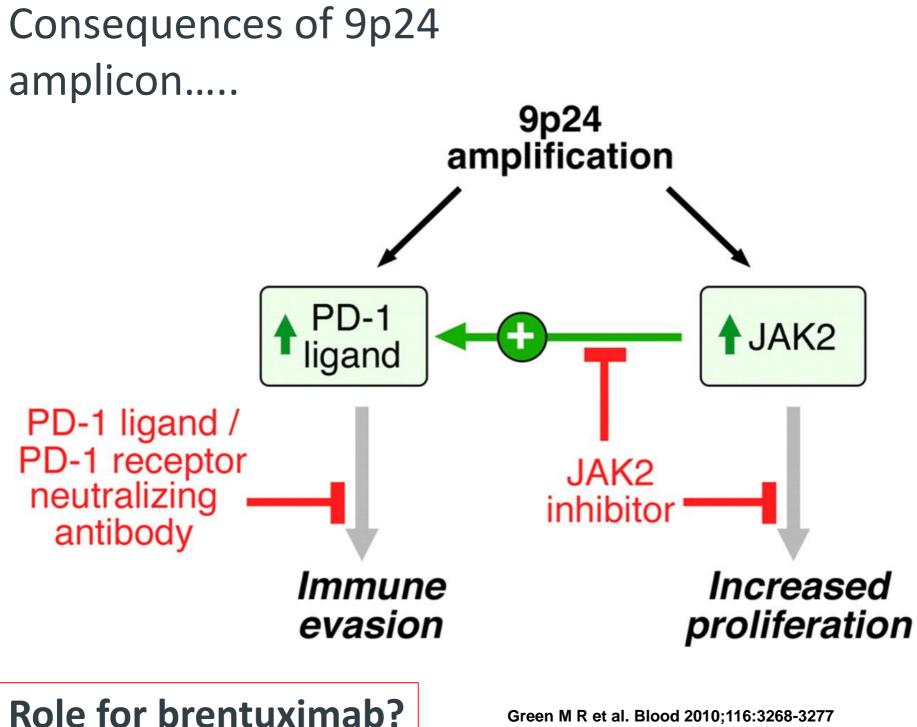
• Is it actually any better than R-CHOP?

Patient Characteristics

Where they special 'NCI' patients or the usual Friday evening special? Pretty representative

Table 1. Baseline Characteristics of the Study Patients.*				
Characteristic	Prospective NCI Cohort (N=51)	Retrospective Stanford Cohort (N=16)	P Value between Study Cohorts	
Female sex — no. (%)	30 (59)	9 (56)	1.00	
Age — yr			0.04	
Median	30	33		
Range	19–52	23–68		
Bulky tumor, ≥10 cm			0.57	
Patients — no. (%)	33 (65)	9 (56)		
Maximal diameter range — cm	5-18	7–18		
Stage IV disease — no. (%)	15 (29)	7 (44)	0.36	
Elevated lactate dehydrogenase level — no. (%)	40 (78)	11 (69)	0.51	
Extranodal site — no. (%)	27 (53)	3 (19)	0.02	
Pleural effusion — no. (%)	24 (47)	10 (62)	0.39	
CD20+ malignant cells — no. (%)	51 (100)	16 (100)	1.00	
BCL6+ malignant cells — no. (%)	33/37 (89)	ND	ND	


* BCL6 denotes the B-cell lymphoma 6 protein, NCI National Cancer Institute, and ND not done.


One shot: Difficult to rescue

(Kurivillla et al. 2008)

Retrospective of 37 PMBL patients and 143 DLBCL patients:

ORR to salvage PMBL 25% DLBCL 48%

Green M R et al. Blood 2010;116:3268-3277

Summary: PMBL

- Thymic post-GC B-cell malignancy
- Good prognosis (>80% survival) with
 - R-CHOP
 - R-MACOP-B
 - DA-EPOCH-R
- Role of radiotherapy still controversial:
 - Excellent results in series with RT
 - Excellent results in a few series without
- Randomised trials are difficult. New avenues exciting