PDL1 inhibitors in Relapsed/ Refractory Hodgkin Lymphoma:

Associate Professor City of Hope Medical Center Associate Director of Toni Stephenson Lymphoma Center

Blockade of the PD-1 checkpoint with anti–PD-L1 avelumab is sufficient for clinical activity in relapsed/refractory classical Hodgkin lymphoma (cHL)

<u>Robert Chen</u>¹, Adam Gibb², Graham P. Collins³, Rakesh Popat⁴, Dima El-Sharkawi⁴, Cathy Burton⁵, David Lewis⁶, Fiona Miall⁷, Alison Forgie⁸, Anna Compagnoni⁹, Giovanna Andreola⁹, Satjit Brar¹⁰, Aron Thall¹⁰, Adrian Woolfson¹¹, and John Radford²

¹City of Hope Medical Center, Duarte, California, USA; ²The Christie NHS Foundation Trust, Manchester, United Kingdom; ³Churchill Hospital, Cancer and Haematology Centre, Oxford, United Kingdom;
⁴University College London Hospitals NHS Foundation Trust, London, United Kingdom; ⁵St. James's University Hospital, Leeds, United Kingdom; ⁶Plymouth Hospital NHS Trust, Plymouth, United Kingdom;
⁷University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; ⁸Pfizer Oncology Research and Development, San Francisco, California, USA; ⁹Pfizer Oncology, Milano, Italy; ¹⁰Pfizer Oncology, La Jolla, California, USA; ¹¹Pfizer Oncology, New York, New York, USA

Oral Presentation at the 14th International Conference on Malignant Lymphoma; June 14-17, 2017; Lugano, Switzerland

Abstract No. 055

This presentation is the intellectual property of the authors.

Disclosure information for Dr. Robert Chen

I have the following financial relationships to disclose:

- Consultancy or advisory role for Pfizer, Seattle Genetics, Bristol-Myers Squibb, Genentech, Pharmacyclics, and Merck KGaA, Darmstadt, Germany
- Research funding from Seattle Genetics, Millennium, Pharmacyclics, and Merck KGaA, Darmstadt, Germany
- Speakers bureau for Merck KGaA, Darmstadt, Germany

Immune checkpoint inhibitors for the treatment of classical Hodgkin lymphoma

- Amplification of chromosome 9p24.1 is frequent in classical Hodgkin lymphoma (cHL)^{1,2}
 - This amplicon contains the genes encoding the PD-L1 and PD-L2 immune checkpoint proteins, resulting in their overexpression²
- Anti–PD-1 checkpoint inhibitors are an approved treatment option for patients with relapsed/refractory (R/R) cHL³⁻⁶
 - Anti–PD-1 antibodies block both the PD-1/PD-L1 and PD-1/PD-L2 interactions
 - It has not yet been established whether blockade of the PD-1/PD-L1 interaction is necessary and/or sufficient for the therapeutic effect observed in cHL

1. Joos S, et al. Cancer Res. 2000;60:549-52. 2. Green MR, et al. Blood. 2010;116(17):3268-77. 3. Opdivo (nivolumab) [Summary of Product Characteristics]. Uxbridge, UK: Bristol-Myers Squibb Company; 2017. 4. Keytruda (pembrolizumab) [Summary of Product Characteristics]. Hertfordshire, UK: Merck Sharp & Dohme Limited; 2017. 5. Opdivo (nivolumab) [package insert]. Princeton, NJ, USA: Bristol-Myers Squibb Company; 2017. 6. Keytruda (pembrolizumab) [package insert]. Whitehouse Station, NJ, USA: Merck Sharp & Dohme; 2017.

Avelumab

- Human anti–PD-L1 IgG1 mAb
- Inhibits PD-L1/PD-1 interactions,¹ leaving PD-L2/PD-1 pathway intact
 - Unlike anti-PD-1 antibodies that target T cells, avelumab targets tumor cells
- Half-life ≈4 days; >90% target occupancy dosing Q2W at 10 mg/kg¹
- Induces ADCC against tumor cells in vitro^{2,3}
- Antitumor activity in lung, bladder, renal, and other malignancies⁴⁻⁶
- FDA-approved treatment for metastatic Merkel cell carcinoma and advanced urothelial carcinoma progressed after platinum-containing chemotherapy⁷

ADCC, antibody-dependent cell-mediated cytotoxicity; mAb, monoclonal antibody; NK, natural killer; Q2W, every 2 weeks. 1. Heery CR, et al. Lancet Oncol. 2017;18(5)587-98. 2. Boyerinas B, et al. Cancer Immunol Res. 2015;3(10):1148-57. 3. Fujii R, et al. Oncotarget. 2016;7:33498-511. 4. Larkin J, et al. Ann Oncol. 2016;27(Suppl): Abstract 775PD. 5. Gulley JL, et al. Lancet Oncol. 2017;18(5): 599-610. 6. Apolo A, et al. J Clin Oncol. 2017 Apr 4. [Epub ahead of print]. 7. Bavencio (avelumab) [package insert]. Darmstadt, Germany: Merck KGaA: 2017.

Study design: JAVELIN Hodgkin (NCT02603419)

Phase 1b, open-label, multicenter, multiple-dose, randomized, parallel-arm trial

allo, allogeneic; **auto**, autologous; **cHL**, classical Hodgkin lymphoma; **IV**, intravenous; **NCI CTCAE**, National Cancer Institute Common Terminology Criteria for Adverse Events; **R**, randomize; **Q2W**, every 2 weeks; **Q3W**, every 3 weeks; **SCT**, stem cell transplant. * Per NCI CTCAE v4.03.

1. Cheson BD, et al. J Clin Oncol. 2007;25(5):579-86.

Baseline patient and disease characteristics

• 31 patients were randomized in the lead-in phase

Characteristic	N=31
Age, n (%) <65 years ≥65 years Median (range), years	24 (77.4) 7 (22.6) 38.0 (22.0-81.0)
Sex, n (%) Male Female	25 (80.6) 6 (19.4)
Number of prior anticancer therapy regimens 1 2 3 ≥4	1 (3.2) 3 (9.7) 7 (22.6) 20 (64.5)
Prior treatment with brentuximab vedotin	31 (100.0)
SCT status, n (%) Post-auto Post-allo Ineligible	5 (16.1) 8 (25.8) 18 (58.1)

Patient disposition

- Avelumab treatment was ongoing in 9 patients (29.0%) at the time of analysis
- Median follow-up in all patients was 43.3 weeks (range 20.6-57.6)

Treatment status	N=31 n (%)
Treatment ongoing	9 (29.0)
Treatment discontinued	22 (71.0)
Reason for discontinuation Progressive disease Adverse event Withdrawal by patient Physician decision Randomized but did not receive treatment* Other	10 (32.3) 4 (12.9) 2 (6.5) 1 (3.2) 1 (3.2) 4 (12.9)

Exposure to avelumab

• Median treatment duration was 16.9 weeks

Treatment exposure	N=30		
Duration of treatment, weeks* Mean (SD) Median (range)	19.0 (13.3) 16.9 (2.0-52.0)		
Number of cycles [†] Mean (SD) Median (range)	8.6 (6.2) 8.0 (1.0-26.0)		

* Duration of treatment was defined as (weeks) = (last dose date – first dose date + 14)/7 for Q2W schedule or (last dose date – first dose date + 21)/7 for Q3W schedule.

[†] 1 cycle = 14 days; includes cycles with missed doses of avelumab.

Best overall response

- ORR was 41.9%, including CR in 16.1% and PR in 25.8%
- Median time to response was 1.5 months (range 1.4-6.2)

BOR n (%)	Overall population N=31
CR	5 (16.1)
PR	8 (25.8)
SD	9 (29.0)
PD	5 (16.1)
NE*	4 (12.9)
ORR, %	41.9
DCR, %	71.0

BOR, best overall response; CR, complete response; DCR, disease control rate; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

* Patients had no post-baseline assessments for reasons other than death.

Best overall response

• ORRs in dose cohorts ranged from 0% to 83.3%

	Avelumab				
BOR n (%)	A 70 mg Q2W n=6	B 350 mg Q2W n=7	C 500 mg Q3W n=6	D 500 mg Q2W n=6	E 10 mg/kg Q2W n=6
CR	3 (50.0)	0	2 (33.3)	0	0
PR	0	0	3 (50.0)	2 (33.3)	3 (50.0)
SD	0	5 (71.4)	1 (16.7)	2 (33.3)	1 (16.7)
PD	1 (16.7)	1 (14.3)	0	1 (16.7)	2 (33.3)
NE*	2 (33.3)	1 (14.3)	0	1 (16.7)	0
ORR, %	50.0	0	83.3	33.3	50.0
DCR, %	50.0	71.4	100	66.7	66.7

* Patients had no post-baseline assessments for reasons other than death.

Best percent change in tumor burden from baseline (n=27*)

- 13 patients experienced tumor shrinkage of \geq 50%
- 3 patients experienced tumor growth of \geq 50%

Best overall response in patients whose disease progressed following SCT

• ORR in patients with cHL progressed following either auto-SCT or allo-SCT was 20.0% and 62.5%, respectively

BOR n (%)	Post-auto SCT n=5	Post-allo SCT n=8
CR	0	2 (25.0)
PR	1 (20.0)	3 (37.5)
SD	2 (40.0)	2 (25.0)
PD	0	0
NE*	2 (40.0)	1 (12.5)
ORR, %	20.0	62.5
DCR, %	60.0	87.5

* Patients had no post-baseline assessments for reasons other than death.

Treatment-related adverse events

- Grade 3/4 TRAEs occurred in 36.7% of patients; there were no treatment-related deaths
 - 2 patients with prior allo-SCT and prior GVHD developed grade 3 liver acute GVHD, which resolved completely following immunosuppressive therapy and discontinuation of avelumab
 - Incidence of TRAEs across the 5 dose cohorts was similar

TRAEs in >10% of patients and	n (%)				
N=30	Any grade	Grade 1	Grade 2	Grade 3	Grade 4
Patients with events	24 (80.0)	4 (13.3)	9 (30.0)	6 (20.0)	5 (16.7)
Infusion-related reaction*	9 (30.0)	1 (3.3)	6 (20.0)	2 (6.7)	0
Nausea	6 (20.0)	5 (16.7)	0	1 (3.3)	0
Rash	5 (16.7)	4 (13.3)	1 (3.3)	0	0
ALT increased	4 (13.3)	2 (6.7)	0	2 (6.7)	0
Fatigue	4 (13.3)	4 (13.3)	0	0	0
Lipase increased	3 (10.0)	0	1 (3.3)	0	2 (6.7)
GGT increased	2 (6.7)	1(3.3)	0	0	1 (3.3)
Immune thrombocytopenic purpura	1 (3.3)	0	0	0	1 (3.3)
Thrombocytopenia	1 (3.3)	0	0	0	1 (3.3)

ALT, alanine aminotransferase; GGT, gamma-glutamyltransferase; GVHD, graft vs host disease; TRAE, treatment-related adverse event. * Infusion-related reaction is a composite preferred term that includes infusion-related reaction, back pain, chills, and pyrexia.

Patient Case 1

- 81 yo male initially presented with stage IV HL
- BV only clinical trial \rightarrow CR \rightarrow PD
- AVD x 4 → CR 2014, PD in 2016
- Enrolled onto avelumab clinical trial

CT/PET Response

• Baseline

• Post 4 cycles

Patient Case 2

- 33 yo female initially presented with stage IIIB disease
- ABVD \rightarrow CR \rightarrow PD
- ICE plus ASCT \rightarrow CR \rightarrow PD
- BV \rightarrow PR \rightarrow AlloHCT \rightarrow CR \rightarrow PD
- BV \rightarrow PR \rightarrow PD
- BV + Bendamustine \rightarrow PR \rightarrow DLI \rightarrow PR \rightarrow PD
- Enrolled on avelumab clinical trial

• Post 4 Cycles

Conclusions

- Avelumab (anti–PD-L1) has clinical activity with an acceptable safety and tolerability profile in patients with heavily pretreated cHL
 - PD-L1 blockade is sufficient to produce clinical responses in cHL
- With a sample size of 31 patients, the ORR with avelumab was 41.9%, with CR in 16.1%
 - PD-L2 blockade may not be necessary for the therapeutic effect observed with PD-1 inhibitors in some patients
- The ORR observed in the post-allo SCT setting (62.5%) suggests that PD-L1 blockade may potentiate the graft vs. lymphoma response
 - Grade 3 liver acute GVHD was observed in 2 post-allo SCT patients with prior GVHD, but immunosuppressive therapy resulted in complete resolution
- Based on the observed efficacy and safety profiles and unmet need, the study has recently been amended to focus the expansion on patients who progressed post-allo SCT

Acknowledgments

- We thank the patients and their families
- The authors also thank the investigators, co-investigators, and study teams at each of the participating centers and at Pfizer Inc
- This trial was sponsored by Pfizer Inc, New York, NY, USA, and is part of an alliance between Pfizer Inc and Merck KGaA, Darmstadt, Germany
- Medical writing support was provided by ClinicalThinking, Inc, Hamilton, NJ, USA, and funded by Pfizer, Inc and Merck KGaA, Darmstadt, Germany