How I (We) Treat CTCL

Youn H Kim, MD

小

Multidisciplinary Cutaneous Lymphoma Group Stanford Cancer institute School University School of Medicine

2015... 2018 T-Cell Lymphomas: we are close to the finalization

Bologna ROYAL HOTEL CARLTON May 7-9, 2018

President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura

NCCN NHL TCL member

Disclosures of Youn Kim

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Eisai	хх						SAC
Kyowa	хх					хх	SAC
Takeda	хх					хх	SAC
Seattle Gen	хх					хх	
Actelion						хх	
Merck	хх						
Portola	хх						
Medivir						xx	

Cutaneous T-cell lymphoma

Mycosis fungoides & Sézary syndrome, very diverse in presentation

- Rare/orphan disease, 1 in 100,000 annual incidence, 4% of NHLs
- Significant heterogeneity in clinical, histopathology, cellular/molecular features

Stages IIB-IV

Patch/plaque dz, T1. T2 Stages IA-IIA

Management of extracutaneous disease, stage IV

Blood (B2) Sézary cells

Lymph node (N3)

Sézary syndromegeneralized erythroderma, keratoderma, severe itching; freq staph aureus infection

Evaluation for erythrodermic patients

- Skin bx often non-diagnostic
- Sézary flow
- Relevant clone: same dominant TCR sequences in skin, blood, LN
- Imaging for LAD, H/S
- Skin culture

Multidisciplinary Teamwork for Optimal Comprehensive Care

Newer therapies in clinical development in CTCL

National

Comprehensive

Cancer Network®

NCCN

NCCN Guidelines Version 3.2018 Mycosis Fungoides/Sezary Syndrome

NCCN Guidelines Index Table of Contents Discussion

	SUGGESTED TREATMENT REGIMENS ^a	
SKIN-DIRECTED THERAPIES For limited/localized skin involvement (Skin-Limited/Local) • Topical corticosteroids ^b • Topical chemotherapy (mechlorethamine [nitrogen mustard]) • Local radiation (8-12 Gy; 24-30 Gy for unilesional presentation) ^c • Topical retinoids (bexarotene, tazarotene) • Phototherapy (UVB, NB-UVB for patch/	SYSTEMIC THERAPIES Category A (SYST-CAT A) Milder tx, indolent • Retinoids (bexarotene, all-transister is observed in the second se	SYSTEMIC THERAPIES (continued) Category C (SYST-CAT C) ^j (alphabetical order) • Bortezomib (category 3) • Brentuximab vedotin ^h • Gemcitabine • Liposomal doxorubicin • Low- or standard-dose pralatrexate • Romidepsin • See regimens listed on <u>TCEL-B 2 of 5</u> (PTCL-NOS) ^k
 thin plaques; PUVA for thicker plaques)^d Topical imiquimod For generalized skin involvement (Skin-Generalized) Topical corticosteroids^b Topical chemotherapy (mechlorethamine [nitrogen mustard]) Phototherapy (UVB, NB-UVB, for patch/thin plaques; PUVA for thicker plaques)^d Total skin electron beam therapy (TSEBT) (12–36 Gy)^{c,e,f} 	 Brentuximab vedotin^h Gemcitabine Liposomal doxorubicin Low-dose pralatrexate Other therapies Chlorambucil Pentostatin Etoposide Cyclophosphamide Temozolomide Methotrexate (>100 mg q week) Pembrolizumabⁱ (category 2B) Bortezomib (category 3) 	Skin-directed + Systemic • Phototherapy + retinoid • Phototherapy + IFN • Phototherapy + photopheresis ^g • Total skin electron beam* + photopheresis ^g Systemic + Systemic • Retinoid + IFN • Photopheresis ^g + retinoid • Photopheresis ^g + retinoid • Photopheresis ^g + retinoid

Treatment "buckets", category A, B, C; combinations of treatments

Reliable skin responses with skin-directed options as primary therapy in stages I-IIA (skin-limited, patch/plaque disease)

	Skin Therapy	CR	ORR
FDA approved	Topical steroids	45-65%	75-95%
	Bexarotene gel	20-35%	50-75%
	Topical NM	25-70%	50-90%
	nbUVB	45-75%	75-100%
	PUVA	50-80%	85-100%
	TSEBT (12-36 Gy)	30-90%	90-100%

 Systemic agents (e.g., bexarotene, IFN, methotrexate, vorinostat, romidepsin) 15-45% RR in skin with low CR rates

> Arch Dermatol 2003;139:165, J Am Acad Dermatol 2003;49:801, J Am Acad Dermatol 2002;47:191, Arch Dermaol 2005;141:305, Arch Dermatol 2011;147:561, Arch Dermatol 2001;137:581, J Clin Oncol 2007;25:3109, J Clin Oncol 2010;28:4485

Selected Systemic Therapies for MF Stage > IIB

Agent	ORR	CR	Comments
Bexarotene	45–55%	6%	≥Stage IIB
Vorinostat	29.5%	2%	≥Stage IIB
Denileukin diftitox	36%	12%	18ug/kg
Romidepsin	38%	7%	≥Stage IIB
Gemcitabine	68%	8%	1000 mg/m², 3–4 wk
Pralatrexate	53%	6%	Stage IIB
Liposomal doxorubicin	41%	6%	Stage IIB-IV
Brentuximab vedotin	68%	16%	Stage IIB, RCT against bex/mtx
First RCT in CTCL company new tx against standard th	aring Ma erapy	odified from Horwitz	S. Clin Lymphoma Myeloma. 2008;8(si

Lancet 390:555-566, 2017 FDA approval 11/2017 in MF

Clinical activity of systemic agents in Sezary Syndrome

Agent	Ν	ORR	DOR	comments
Bexarotene	17	24% (no CR)	ND	Phase 2-3 single arm
Photopheresis+, varying regimen	70 (>1 study)	20-89% (0-29% CR)	ND	Mostly retrospective studies
Vorinostat	30	33% (no CR)	6+ mo	Pivotal single arm
Romidepsin	13	31% (no CR)	> 1 year	Pivotal single arm
Methotrexate	10	50% (30% CR)	>1 year	Retrospective study
Chlorambucil	26	88%	ND	Retrospective study
Gemcitabine	11	73%	4 mo	Phase 2 single arm
Alemtuzumab, varying regimen	14/17	86%/82%	6 mo (n=17)	Phase 2 single arm Median OS 35 mo (n=14)
Mogamulizumab, phase 3 RCT	81	37%	17 mo	Largest RCT, PFS as primary; blood response in 83/122 (68%)
Pembrolizumab	15	27% (7% CR)	> 1 year	Phase 2 single arm

Brentuximab, ALCANZA RCT excluded SS; activity reported in ISTs

nature erics 2015

Do we have molecular data to guide management?

Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2

Alexander Ungewickell^{1,2,12}, Aparna Bhaduri^{1,12}, Eon Rios¹, Jason Reuter³, Carolyn S Lee¹, Angela Mah¹, Ashley Zehnder¹, Robert Ohgami⁴, Shashikant Kulkarni⁵⁻⁷, Randall Armstrong⁸, Wen-Kai Weng⁸, Dita Gratzinger⁴, Mahkam Tavallaee⁹, Alain Rook¹⁰, Michael Snyder³, Youn Kim⁹ & Paul A Khavari^{1,11}

Many potential actionable targets/pathways Translation into meaningful outcome needs to be established

Genomic analysis of mycosis fungoides and Sézary **ENCLICS** syndrome identifies recurrent alterations in TNFR2

2015;47:1056

nature

Alexander Ungewickell^{1,2,12}, Aparna Bhaduri^{1,12}, Eon Rios¹, Jason Reuter³, Carolyn S Lee¹, Angela Mah¹, Ashley Zehnder¹, Robert Ohgami⁴, Shashikant Kulkarni⁵⁻⁷, Randall Armstrong⁸, Wen-Kai Weng⁸, Dita Gratzinger⁴, Mahkam Tavallaee⁹, Alain Rook¹⁰, Michael Snyder³, Youn Kim⁹ & Paul A Khavari^{1,11}

Horwitz et al, ASH 2014

Duvelisib (IPI-145), a Phosphoinositide-3-Kinase-δ,γ Inhibitor, Shows Activity in Patients with Relapsed/Refractory T-Cell Lymphoma

Steven Horwitz¹; Pierluigi Porcu²; Ian Flinn³; Brad Kahl⁴; Howard Stern⁵; Mark Douglas⁵; Kerstin Allen⁵; Patrick Kelly⁵; and Francine Foss⁶

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²The Ohio State University;³Sarah Cannon Research Institute, Nashville, TN, USA; ⁴University of Wisconsin, Madison, WI, USA; ⁵Infinity Pharmaceuticals, Inc., Cambridge, MA, USA; ⁶Yale University Cancer Center, New Haven, CT, USA.

genetics

Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2

2015;47:1056

Alexander Ungewickell^{1,2,12}, Aparna Bhaduri^{1,12}, Eon Rios¹, Jason Reuter³, Carolyn S Lee¹, Angela Mah¹, Ashley Zehnder¹, Robert Ohgami⁴, Shashikant Kulkarni^{5–7}, Randall Armstrong⁸, Wen-Kai Weng⁸, Dita Gratzinger⁴, Mahkam Tavallaee⁹, Alain Rook¹⁰, Michael Snyder³, Youn Kim⁹ & Paul A Khavari^{1,11}

PI3k inhibitor combination strategies in CTCL: duvelisib + bortezomib vs. duvelisib + romidepsin (ongoing trial – MKSCC/Horwitz, DFCI, Stanford, other) Why is immunotherapy important in CTCL?

Need of therapies with reliable responses that last

Partnering with immunotherapy, induction of anti-tumor memory

Immunotherapies in clinical development in CTCL *Partner with immune therapies*

General concepts in managing MF/SS-CTCL

Lack of evidence-based help

NCCN, EORTC, ESMO, other regional guidelines

 Consensus-based guidelines to enable access/insurance coverage (management by stage, MF v SS, indolent v aggressive, dz burden, etc)

Overall goal of treatment (other than allo-HSCT)

- Not curative intent: good PRs that are durable, well-tolerated, and improve QoL
- Lasting CRs are great but hard to attain and often at risk of undesired AEs

Appreciate unique approaches in MF/SS

- Optimize use of skin-directed and biologic agents
- Single agent chemotx (chronic tx) over combination chemotx (PTCL regimens short-lived; best for extensive EC dz and/or prior to allo HSCT)
- Often observe **mixed responses** (within and across compartments)
- Can re-cycle treatments
- Optimize utility of maintenance therapy to sustain response
- Supportive therapy is essential
 - Chronic control of skin infections (staph, HSV)
 - Use anti-itch regimens, emollients/sealants

Evaluation and management in MF/SS

Prognosis of early vs advanced stage MF and SS: Appropriate risk-stratification for treatment selection

Stage IA vs. control population: Life-expectancy is not altered in limited patch/plaque disease

Kim et al, Arch Dermatol 1996;132:1309

Large-cell transformation (LCT) with worse clinical outcome;

F-MF two prognostic subsets (Hodak et al, 2016) F-MF not sig independent factor in advanced

MF/SS (CLIC Scarisbrick et al, 2015)

J Am Acad Dermatol 2016;75:347, J Clin Oncol 2010;28:4730, Blood 2012;119:1643, J Clin Oncol 2015;33:3766

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model

Julia J. Scarisbrick, H. Miles Prince, Maarten H. Vermeer, Pietro Quaglino, Steven Horwitz, Pierluigi Porcu, Rudolf Stadler, Gary S. Wood, Marie Beylot-Barry, Anne Pham-Ledard, Francine Foss, Michael Girardi, Martine Bagot, Laurence Michel, Maxime Battistella, Joan Guitart, Timothy M. Kuzel, Maria Estela Martinez-Escala, Teresa Estrach, Evangelia Papadavid, Christima Antoniou, Dimitis Rigopoulos, Vassilki Nikolaou, Makoto Sugaya, Tomomitsu Miyagaki, Robert Gniadecki, José Antonio Sanches, Jade Cury-Martins, Denis Miyashiro, Octavio Servitje, Cristina Muniesa, Emilio Berti, Francesco Onida, Laura Corti, Emilia Hodak, Iris Amitay-Laish, Pablo L. Ortiz-Romero, Jose L. Rodríguez-Peralto, Robert Knobler, Stefanie Porkert, Wolfgang Bauer, Nicola Pimpinelli, Vieri Grandi, Richard Cowan, Alain Rook, Ellen Kim, Alessandro Pileri, Annalisa Patrizi, Ramon M. Pujol, Henry Wong, Kelly Tyler, Rene Stranzenbach, Christiane Querfeld, Paolo Fava, Milena Maule, Rein Willemze, Felicity Evison, Stephen Morris, Robert Twigger, Rakhshandra Talpur, Jinah Kim, Grant Ognibene, Shufeng Li, Mahkam Tavallaee, Richard T. Hoppe, Madeleine Duvic, Sean J. Whittaker, and Youn H. Kim

Prognostic modeling beyond clinical stage

Retro-CLIPI:

Retrospective study of 10 parameters in <u>advanced</u> <u>stage MF/SS</u>, dx from 2007

- 29 international sites, N = 1,275
- 4 independent factors: Age >60, stage IV, LCT, ↑LDH
- Combined into prognostic index model
 => 3 risk groups

5-year OS rates of 3 risk groups

- Low-risk, 67.8%
- Intermediate-risk, 43.5%
- High-risk, 27.6%

Prospective study (PROCLIPI) in progress- to validate old and identify new prognostic factors

- J Scarisbrick/UHB, EU lead
- Y Kim/Stanford, non-EU lead

Two extremes of tumor/T3 disease:

both with "LCT+" Indolent vs aggressive Managed differently

Localized, indolent Tumor/T3 disease Generalized, aggressive Tumor/T3 disease

Management of skin "tumor" disease (stage IIB)

- Limited vs. generalized extent tumor disease
- Intensify therapy for aggressive growth pattern, e.g., la cell transformation (LCT)
- Limited extent tumor disease
 - Local RT for limited tumor disease
 - "Milder" systemic options (Cat-A)
- Generalized extent tumor disease
 - Indolent (no LCT)
 - TSEBT (low-dose/12 Gy)
 - Category A systemic +/- skin-directed tx
 - Aggressive (+ LCT)
 - TSEBT (12-36 Gy) + Cat-A systemic
 - Category B or C systemic options +/- skin-directed tx
 - Refractory dz => clinical trials, multi-agent therapies

- Category A, "milder"
- Retinoids
- IFNs
- HDAC-i
- Methotrexate (lowdose)
- +/- Skin-directed therapie Brentuximab

 - **Clinical trial**

Category B or C "more intensive"

- Brentuximab vedotin
- Pralatrexate (15-30 mg/m2)
- HDAC-i (romidepsin) •
- Liposomal doxorubicin
- Gemcitabine
- Other single agents
- **Clinical trial**
- **Options for PTCL-NOS**

Radiation is highly effective in CTCL, so use it when appropriate for reliable disease reduction, +/- maintenance strategies

RT highly effective for localized refractory tumor (T3) disease:

Predominantly face, refractory to oral bexarotene, MTX, IFN

<u>67 F with F-MF</u> Bexarotene, MTX, IFN, topical steroid, excimer

EBT 15 Gy "face technique" => CR, sustained 2+ years

Generalized aggressive tumors

Multiple comorbidites

TSEBT 36 Gy => near CR Low-dose bex + IFN

Limited dz x 7+ yrs with Clobetasol and Valchlor gel +/- occ local RT

However, most others need subsequent systemic therapy

Radiation effective therapy for rapid disease reduction

Total skin electron beam therapy (TSEBT), 12 Gy x 2

Management with lower dose total skin electron beam therapy, followed by milder systemic therapies and/or skin-directed therapies

Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: Results of a pooled analysis from 3 phase-II clinical trials

Richard T. Hoppe, MD, a Cameron Harrison, MD, b Mahkam Tavallace, MD, MPH, bJAAD 2015;Sameer Bashey, MD, b Uma Sundram, MD, PhD, b,c Shufeng Li, MS, b Lynn Million, MD, aJAAD 2015;Bouthaina Dabaja, MD, d Pamela Gangar, MD, C Madeleine Duvic, MD, a stanford, California, and Houston, TexasJAAD 2015;

- Low-dose, 12 Gy (3 wks) vs. standard, 36 Gy (10 wks)
- <u>Reliable/efficient reduction</u> in skin disease => <u>near 90% ORR, ~30% CR</u>
- ~ 1.5 yr median duration of benefit
- Less side effects: no permanent hair loss, less skin toxicity
- Can be given repetitively in pt's course
- Low-dose can be followed or combined with other therapies to boost response and duration of benefit
- Great option for folliculotropic disease, generalized thick plaques o indolent tumor disease, esp pts with multiple co-morbidities

Table II. Best overall response to treatment atstudy termination, total time to response, andduration of clinical response

		Response data				ORR
Characteristic	n (%)	CR	PR	SD	PD	n (%)
Clinical stage						
All	33 (100)	9 (27)	20 (61)	4 (12)	0	29 (88)
IB	22 (67)	7	13	2	0	20 (91)
IIA	2 (6)	0	2	0	0	2 (100)
IIB	7 (21)	2	4	1	0	6 (96)
IIIA	2 (6)	0	1	1	0	1 (50)
Median time						
to response		7.	6 (3-12.4) wk		
(range)						
Median						
duration						
of clinical		70.7	(41.8-13	3.8) wk	(.	
benefit			-	-		•

Low-dose (12 Gy) Total Skin EBT Over 2-3 wks

Combination with immunotherapy trials in progress to improve/prolong clinical response:

Low-dose TSEBT + rh-IL-12, IFN-g, checkpoint inhibitors, other

Single-arm phase 2A study of rHu-IL-12 + low-dose TSEBT in MF

ASH 12/2016 EORTC 10/2017

Kim, Hoppe, Rook

- Single arm, open-label, non-randomized study for patients with MF •
- N=10; Clinical Stage IB-IIIB, >18 years old •

Stage IIB

MF w/ large cell transformation with aggressive clinical behavior

Need therapies with rapid activity

LCT+ treatment options, trials

NCCN options for LCT+ (Cat-C)

- Brentuximab vedotin (1st if CD30↑)
- Pralatrexate
- Romidepsin
- Liposomal doxorubicin
- Gemcitabine
- [TSEBT (12-36 Gy) +/- bex, IFN]
- Clinical trials
- PTCL options (EC+ dz)
- +/- local RT
- (+/- followed with LD-TSEBT)

Great clinical response to brentuximab vedotin (BV) in MF/SS

Sézary syndrome, IVA₁

MF IVA₂ LN with LCT

MF IVB with LCT

Kim Y, et al, J Clin Oncol 2015;33:3750

BV demonstrates clinical activity in all compartments

520

47

R

520

Correlation of skin/global response with tissue CD30 by IHC: Clinical activity observed with all CD30 expression levels

Pooled analysis of Stanford/MDACC ISTs **Huen, Rahbar, et al. in progress; partially presented at SID 2016 Duvic et al. J Clin Oncol 2015;33:3750 Kim et al. J Clin Oncol 2015;33:3759

Inter- and intra-lesional variability in CD30 expression levels by IHC Patient examples from Stanford BV IST

Rahbar et al. J Invest Dermatol., 2017 Dec, Epub ahead of print

MF stage IIB with LCT

- Inter-lesional biopsies: Plaque, left back, CD30% = 5% Tumour, left arm, CD30% = 100%
- Intra-lesional paired biopsies: Same tumour lesion, CD30% = 100%, 50%

MF stage IIB with CD30_{min} = 0%

Kim YH, et al. J Clin Oncol 2015;33:3750 Rahbar et al. J Invest Dermatol., Accepted 2017 Stanford SGN-35 IST

ALCANZA: Commonly reported (≥15% of patients) treatment-emergent AEs

BV use in CTCL population:

- Important to not prolong use of BV to avoid irreversible neuropathy, aim for 6-8 cycles and transition to treatments with better long-term tolerability
- Can retreat with disease progression
- Explore alternative dose/schedules in MF/SS

Management of <u>non</u>-Sezary, stage IV disease

Management based LN dz burden (+/- LCT), visceral disease

Cat B or C options

- Single agents "more intensive": brentuximab, pralatrexate, romidepsin, liposomal doxorubicin, gemcitabine; etoposide
- Multi-agent chemotherapy/PTCL-NOS for high-burden LN dz or visceral dz, especially if followed by allo HSCT
- Clinical trials
- RT for local control
- Consider allo HSCT

Category B or C (intensive tx)

- Brentuximab vedotin
- Pralatrexate (15-30 mg/m2)
- HDAC-i (romidepsin)
- Liposomal doxorubicin
- Gemcitabine
- Other single agents
- Clinical trial
- Options for PTCL-NOS

Importance of supportive management in Sezary syndrome

Clinical activity of systemic agents in Sezary Syndrome

Agent	Ν	ORR	DOR	comments
Bexarotene	17	24% (no CR)	ND	Phase 2-3 single arm
Photopheresis+, varying regimen	70 (>1 study)	20-89% (0-29% CR)	ND	Mostly retrospective studies
Vorinostat	30	33% (no CR)	6+ mo	Pivotal single arm
Romidepsin	13	31% (no CR)	> 1 year	Pivotal single arm
Methotrexate	10	50% (30% CR)	>1 year	Retrospective study
Chlorambucil	26	88%	ND	Retrospective study
Gemcitabine	11	73%	4 mo	Phase 2 single arm
Alemtuzumab, varying regimen	14/17	86%/82%	6 mo (n=17)	Phase 2 single arm Median OS 35 mo (n=14)
Mogamulizumab, phase 3 RCT	81	37%	17 mo	Largest RCT, PFS as primary; blood response in 83/122 (68%)
Pembrolizumab	15	27% (7% CR)	> 1 year	Phase 2 single arm

Brentuximab, ALCANZA RCT excluded SS; activity reported in ISTs

Management of Sezary Syndrome, B2/stage IV

Stratification based on blood Sezary burden and I N	
status	1 st line, choice by blood-
Given risk for staph sepsis, utilize agents that spare further	single or combination therapy
immune dysfunction, importance of supportive care	Retinoids
Low-intermediate Sezary burden (spare immune syster	• IFINS • HDAC-i
 "Milder" Cat-A systemic therapies: biologics (bexarotene, photophorosis, interferon), HDAC-L methotrovate 	 Methotrexate (25-35 mg) Photopheresis (if >B0)
 Mogamulizumab pending FDA approval 	 Mogamulizumab pending EDA approval
High Sezary burden (>5-10K/mm ³) (need fast working)	+/- skin-directed option
– Romidepsin +/- TSEBT	2 nd line
 Combination biologics (e.g., photopheresis+, bex + IFN) 	 Alemtuzumab
 Alemtuzumab (low-dose sc, 3-10 mg short courses) 	Pralatrexate
 Clinical trials (mogamulizumab pending FDA approval) 	 Pembrolizumab Bortezomib
Refractory disease	Brentuximab (if SC CD30+)
 Alemtuzumab 	 Clinical trials Other TCL options
 Pralatrexate, brentuximab (if CD30+), bortez, pembrolizumab 	
 Chlorambucil, other TCL options 	
 Clinical trials 	Consider

63 F with Sezary syndrome, stage IVA₁ (T4NxM0B2) with <u>low</u> Sezary burden Consider safety and spare immune function

- \Rightarrow PB flow showed expanded CD4+ T cells, CD4+CD26- 65% of lymphs, abs cnt of 1,270 /mm3
- \Rightarrow **ECP + IFNa** => PR in blood, SD in skin
- \Rightarrow Added **bexarotene** => PR, but lipid problems
- \Rightarrow MTX => PD in blood and skin; reactive LNs

Blood ↑CD4+CD6- 90%, abs cnt 4,500 /mm3

⇒ CR with mogamulizumab (anti-CCR4 mAb) x 3 years

Relapse in skin and blood

- \Rightarrow Bex + IFN => PR x 6 mo,
- ⇒Romidepsin => global PR but tolerability problem
- ⇒Anti-KIR3DL2 mAb => near CR

<u>Supportive care:</u> Topical steroids Oral anti-itch meds antimicrobials (staph aureus)

Anti-CCR4 Monoclonal Antibody, Mogamulizumab, Demonstrates Significant Improvement in PFS Compared to Vorinostat in Patients with Previously Treated Cutaneous T-Cell Lymphoma: Results from the Phase 3 MAVORIC Study

Youn H. Kim, MD¹; Martine Bagot, MD²; Lauren Pinter-Brown, MD³; Alain H. Rook, MD⁴; Pierluigi Porcu, MD⁵; Steven Horwitz, MD⁶; Sean Whittaker, MD⁷; Yoshiki Tokura, MD, PhD⁸; Maarten Vermeer, MD⁹; Pier Luigi Zinzani, MD¹⁰; Lubomir Sokol, MD, PhD¹¹; Stephen Morris, MD⁷; Ellen J. Kim, MD⁴; Pablo L. Ortiz-Romero, MD¹²; Herbert Eradat, MD¹³; Julia Scarisbrick, MBChB, FRCP, MD¹⁴; Athanasios Tsianakas, MD¹⁵; Craig Elmets, MD¹⁶; Stephane Dalle, MD, PhD¹⁷; David Fisher, MD, PhD¹⁸; Ahmad Halwani, MD¹⁹; Brian Poligone, MD, PhD²⁰; John Greer, MD²¹; Maria Teresa Fierro, MD²²; Amit Khot, MD²³; Alison J. Moskowitz, MD⁶; Karen Dwyer²⁴; Junji Moriya²⁴; Jeffrey Humphrey, MD²⁴; Stacie Hudgens²⁵; Dmitri O. Grebennik²⁴; Kensei Tobinai, MD, PhD²⁶; Madeleine Duvic, MD²⁷ for the MAVORIC Investigators

¹Stanford University, Stanford, CA, USA; ²Hôpital Saint Louis, APHP, Inserm U976, Université Paris 7, France; ³University of California Irvine, Orange, CA, USA;
 ⁴University of Pennsylvania, Philadelphia, PA, USA; ⁵Thomas Jefferson University, Philadelphia, PA, USA; ⁶Memorial Sloan Kettering Cancer Center, New York, NY, USA;
 ⁷Guy's and St Thomas' Hospital, London, UK; ⁸Hamamatsu University School of Medicine, Hamamatsu, Japan; ⁹Leiden University, Leiden, The Netherlands;
 ¹⁰Institute of Hematology "Seràgnoli," University of Bologna, Bologna Italy; ¹¹Moffitt Cancer Center, Tampa, FL, USA; ¹²Department of Dermatology, Institute i+12, Hospital 12 de Octubre Medical School, University Complutense Madrid; ¹³UCLA Medical Center, Santa Monica, CA, USA; ¹⁴University Hospital Birmingham,
 Birmingham, UK; ¹⁵University Hospital Münster, Münster, Germany; ¹⁶University of Alabama, Birmingham, AL, USA; ¹⁷Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France; ¹⁸Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁹University of Utah, Salt Lake City, UT, USA; ²⁰Rochester Skin Lymphoma Center, Fairport, NY, USA; ²¹Vanderbilt University Medical Center, Nashville, TN, USA; ²²University of Turin, Turin, Italy; ²³Peter MacCallum Cancer Centre, Melbourne, Australia;
 ²⁴Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ, USA; ²⁵Clinical Outcome Solutions, Tucson, AZ, USA; ²⁶National Cancer Center Hospital, Chuo-ku, Tokyo, Japan;

Mogamulizumab: First-in-class defucosylated humanized anti-CCR4 mAb

Higher ADCC due to a defucosylated Fc region by POTELLIGENT^{®1-3}

GPCR for MDC and TARC⁴ Markers for Type II helper T cells and regulatory T cells (FoxP3+)⁵ Involved in lymphocyte trafficking to skin⁶ Over-expressed in ATL, PTCL, and CTCL^{4,7}

Shinkawa et al. J Biol Chem 2003;278:3466.
 Ishii et al. Clin Cancer Res 2010;16:1520.
 Niwa et al. Cancer Res 2004;64:2127.
 Ishida et al. Clin Cancer Res 2004;10:5494.
 Ishida et al. Cancer Res 2006;66:5716-22.
 Campbell et al. Nature 1999;400:776.
 Ni et al. Clin Cancer Res 2015;21:274.

ADCC, antibody-dependent cellular cytotoxicity; Fc, fragment crystallizable; GPCR, G-protein-coupled receptor; MDC, macrophage derived chemokine; TARC, thymus -and activation-regulated chemokine.

Response outcomes

	Mogamulizumab	Vorinostat
ORR ^{a,b} , n/N (%)	52/186 (28)	9/186 (5)
MF ^c	22/105 (21)	7/99 (7)
SS ^b	30/81 (37)	2/87 (2)
Stage IB/IIA	7/36 (19)	5/49 (10)
Stage IIB	5/32 (16)	1/23 (4)
Stage III	5/22 (23)	0/16 (0)
Stage IV	35/96 (36)	3/98 (3)
DOR, median, months	14	9
MF	13 (n=22)	9 (n=7)
SS	17 (n=30)	7 (n=2)
ORR ^a n/N (%) mogamulizumab after crossover	41/136 ((30)

^aORR is the percentage of patients with confirmed CR or confirmed PR; ^bP<0.0001; ^cP=0.004.

 Median relative dose intensities for mogamulizumab were 97.5% and for vorinostat was 95.1%

Clinical activity by compartment

	Mogamulizumab	Vorinostat
Compartment response rate (confirmed), n/N ^a (%)		
Skin ORR (CR+PR) CR	78/186 (42) 8 (4)	29/186 (16) 1 (1)
Blood ORR (CR+PR) CR	83/122 (68) 54 (44)	23/123 (19) 5 (4)
Lymph nodes ORR (CR+PR) CR	21/124 (17) 10 (8)	5/122 (4) 2 (2)
Viscera ORR (CR+PR) CR	0/3 (0) 0	0/3 (0) 0

^aDenominator includes patients with compartmental disease at baseline

37 AA F >7 yr h/o "atopic dermatitis" treated with phototherapy/steroids => Sezary syndrome, stage IVA2 (N3, no LCT), <u>higher</u> blood Sezary burden

- PET/CT

Multiple PET avid LAD Bx revealed LN4, <u>N3</u>

Sezary flow (higher SC burden)
 CD4+/CD26- 95%, 7000+ SCs, <u>B2</u>

Treatment options for higher SC

- Bex/retinoids +/- IFN
- Photopheresis + IFN, bex
- Anti-folates (pralatrexate)
- HDAC inhibitors (romidepsin)
- Liposomal doxorubicin
- Brentuximab vedotin (if SC CD30+)
- Mogamulizumab (pending FDA)
- Clinical trials
- => Consider allogeneic HSCT

37 AA F Sezary sydrome, stage IVA2 <u>Romidepsin</u> 6 cycles => near global CR (skin near CR, blood CR) No donor available for allo-HSCT

Global PR (near CR): CR/Blood at C3D1, PR/Skin at C4D1, CR/LN at C7D1, then q 2 wks maintenance schedule, worsening dz

Ongoing donor search for allo-HSCT Transitioned to anti-PD-1 mab clinical trial

Pembrolizumab: 37 yo AA F with Sézary syndrome, stage IVA₂, global CR (h/o phototherapy, romidepsin)

Immune mediated flare Gr 2 erythroderma

Final Results From a Multicenter, International, Pivotal Study of Romidepsin in Refractory Cutaneous T-Cell Lymphoma

Sean J. Whittaker, Marie-France Demierre, Ellen J. Kim, Alain H. Rook, Adam Lerner, Madeleine Duvic, Julia Scarisbrick, Sunil Reddy, Tadeusz Robak, Jürgen C. Becker, Alexey Samtsov, William McCulloch, and Youn H. Kim J Clin Oncol 2010:28:4485

Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin As Monotherapy for Patients With Cutaneous T-Cell Lymphoma J Clin Oncol 2009;27:5410

Richard L. Piekarz, Robin Frye, Maria Turner, John J. Wright, Steven L. Allen, Mark H. Kirschbaum, Jasmine Zain, H. Miles Prince, John P. Leonard, Larisa J. Geskin, Craig Reeder, David Joske, William D. Figg, Erin R. Gardner, Seth M. Steinberg, Elaine S. Jaffe, Maryalice Stetler-Stevenson, Stephen Lade, A. Tito Fojo, and Susan E. Bates

	Pivotal study		NCI study		
	As-treated N = 96	Evaluable N = 72	As-treated N = 71	Evaluable N = 63	
ORR, n (%)	33 (34%)	30 (42%)	25 (35%)	25 (40%)	
9 5 % Cl	[25, 45]	[30, 54]	[25, 49]	[28, 53]	
CCR, n (%)	6 (6%)	6 (8%)	4 (6%)	4 (6%)	

Rapid and sustained blood Sez cell response *Great option for Sézary syndrome*

Romidepsin administration 14 mg/m ² IV D1, 8, 15 of 28d cycle						
Table 2. Disease R	esponse					
All Patients (N = 96)						
Response	No.	%	95% CI			
ORR (CR + PR) CR PR SD	33 6 27 45	34 6 28 47	25 to 45 2 to 13 19 to 38 37 to 57			
PD Stage IB and IIA (n = 28) ORR CR	10 7 1	10 25 4	5 to 18			
Stage IIB (n = 21) ORR CR	9 2	43 10				
Stage III (n = 23) ORR CR	9 1	39 4				
Stage IVA (n = 24) ORR CR	8 2	33 8				
Stage IIB to IVA (n = 68) ORR CR	26 5	38 7				
ORR in patients with blood involvement (n = 37) Duration of response (OR; n = 33), months	12 s*	32				
Range $TTP_{(OB: n = 22)}$ months	0.0+-1	.0 9.8+				
Median Range TTR (CR; n = 6), months	2. 0.9-	0 4.8				
Median Range TTP (n = 33), months	4 0.9-	6.9				
Median Range	8 0+-2	1.7+				

Romidepsin FDA approval 11/2009 Single-arm studies

Sézary syndrome with thick skin involvement, LN (N3, LCT+), and blood compartments (high Sézary burden, >10,000 per mm³), stage IVA₂ failed biologic combinations (ECP+, Bex + IFN), MTX + IFN, mogamulizumab

Importance of supportive care to prevent staph infection

HSV/VZV prophylaxis

Sézary syndrome with thick skin involvement (LCT+), LN (N3, LCT+), and blood compartments (high Sézary burden, >10,000 per mm³), stage IVA₂ failed biologic combinations (ECP+, Bex + IFN), MTX + IFN, mogamulizumab; preparation towards allo HSCT

Sezary syndrome, stage IVA w/ LCT in skin/LNs: CR

Pre-TSEBT CD4+/CD26-: 99%, abs 19,780

8.0+ yr (NED, no GVHD) CD4+/CD26-: normalized

JOURNAL OF CLINICAL ONCOLOGY

Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model

Julia J. Scarisbrick, H. Miles Prince, Maarten H. Vermeer, Pietro Quaglino, Steven Horwitz, Pierluigi Porcu, Rudolf Stadler, Gary S. Wood, Marie Beylot-Barry, Anne Pham-Ledard, Francine Foss, Michael Girardi, Martine Bagot, Laurence Michel, Maxime Battistella, Joan Guitart, Timothy M. Kuzel, Maria Estela Martinez-Escala, Teresa Estrach, Evangelia Papadavid, Christina Antoniou, Dimitis Rigopoulos, Vassilki Nikolaou, Makoto Sugaya, Tomomitsu Miyagaki, Robert Gniadecki, José Antonio Sanches, Jade Cury-Martins, Denis Miyashiro, Octavio Servitje, Cristina Muniesa, Emilio Berti, Francesco Onida, Laura Corti, Emilia Hodak, Iris Amitay-Laish, Pablo L. Ortiz-Romero, Jose L. Rodríguez-Peralto, Robert Knobler, Stefanie Porkert, Wolfgang Bauer, Nicola Pimpinelli, Vieri Grandi, Richard Cowan, Alain Rook, Ellen Kim, Alessandro Pileri, Annalisa Patrizi, Ramon M. Pujol, Henry Wong, Kelly Tyler, Rene Stranzenbach, Christiane Querfeld, Paolo Fava, Milena Maule, Rein Willemze, Felicity Evison, Stephen Morris, Robert Twigger, Rakhshandra Talpur, Jinah Kim, Grant Ognibene, Shufeng Li, Mahkam Tavallaee, Richard T. Hoppe, Madeleine Duvic, Sean J. Whittaker, and Youn H. Kim

ORIGINAL REPORT

- Retrospective study of 10 parameters in <u>advanced stage MF/SS</u>, dx from 2007
- 29 international sites, N = 1,275
 - 4 independent factors
 (age >60, stage IV, LCT, ↑LDH)
 - Combined into prognostic index model => 3 risk groups

Take home: How I Treat MF/SS-CTCL

- **Overall management is stage-based**, with recognition of additional prognostic factors (e.g., disease burden, LCT) and risk-stratification
- Despite recent advances in molecular findings, not ready for use in the clinics; and relevance for targeting unclear, need more data
- Optimize/maximize use of skin-directeds, biologics, and single agent chemotherapy, maintenance tx to sustain response
- Optimal use of supportive care to minimize risk for infection and improve QoL
- Explore combination/sequential strategies, to optimize anti-tumor activity, reduce toxicity, and address resistance/escape/evasion
- **Partner with immune therapies to sustain response,** including cellular therapies such as allogeneic HSCT
- Integrate molecular/biomarker platforms into clinical trials and with new therapies to learn predictors for response/resistance/escape, flare reactions, toxicity, or survival outcomes
- Taking steps towards personalized, precision medicine