2015...2018. T-Cell Lymphomas; We are close to the finalization

> Bologna Royal Hotel Carlton May 7-9, 2018

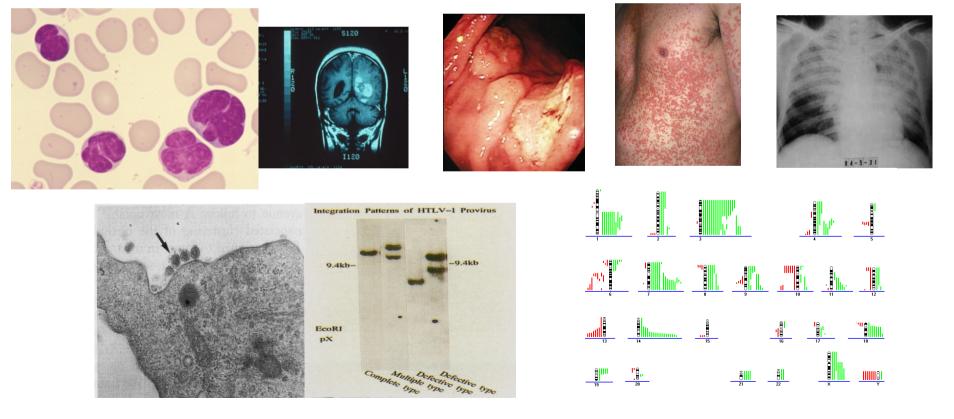
How I treat ATL in Standard Treatment in front-line and prognostic index

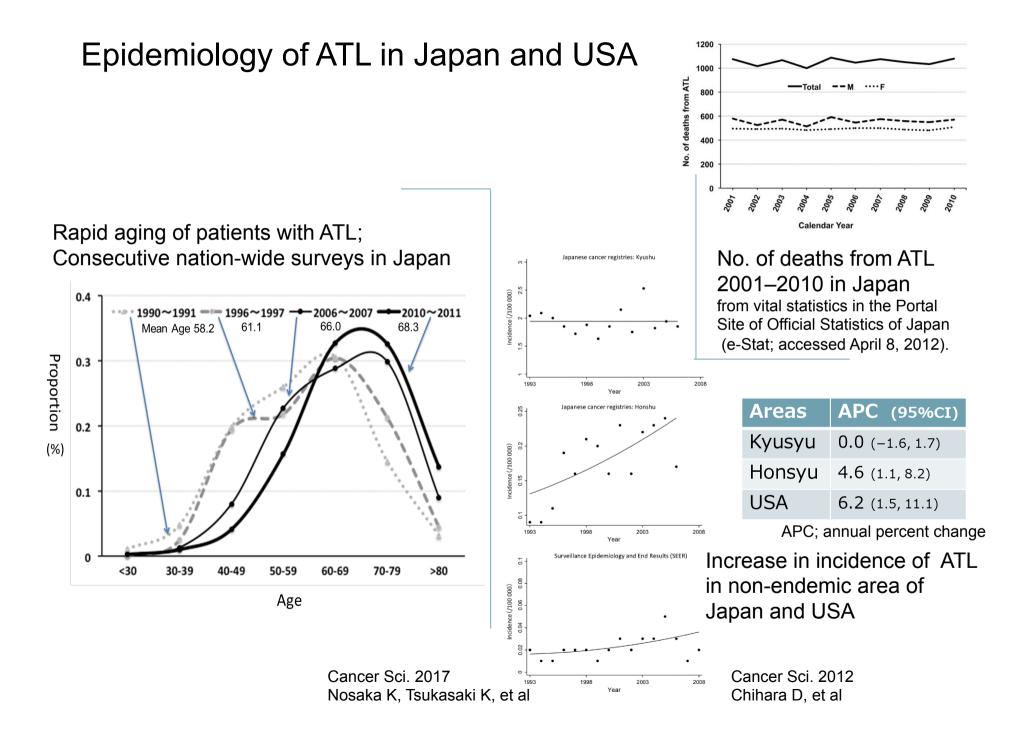
Kunihiro Tsukasaki, M.D., Ph.D.

Department of Hematology International Medical Center, Saitama Medical University

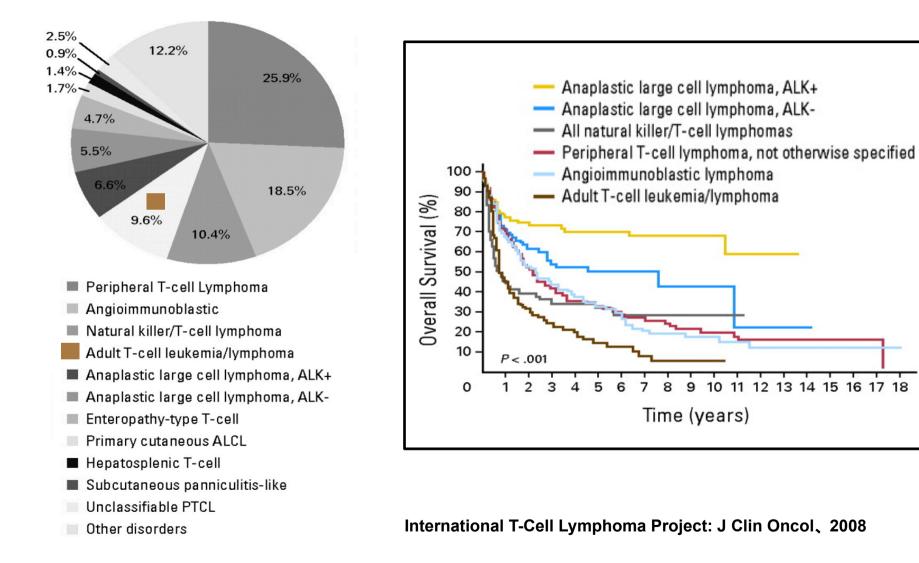
2015... 2018 T-Cell Lymphomas: we are close to the finalization

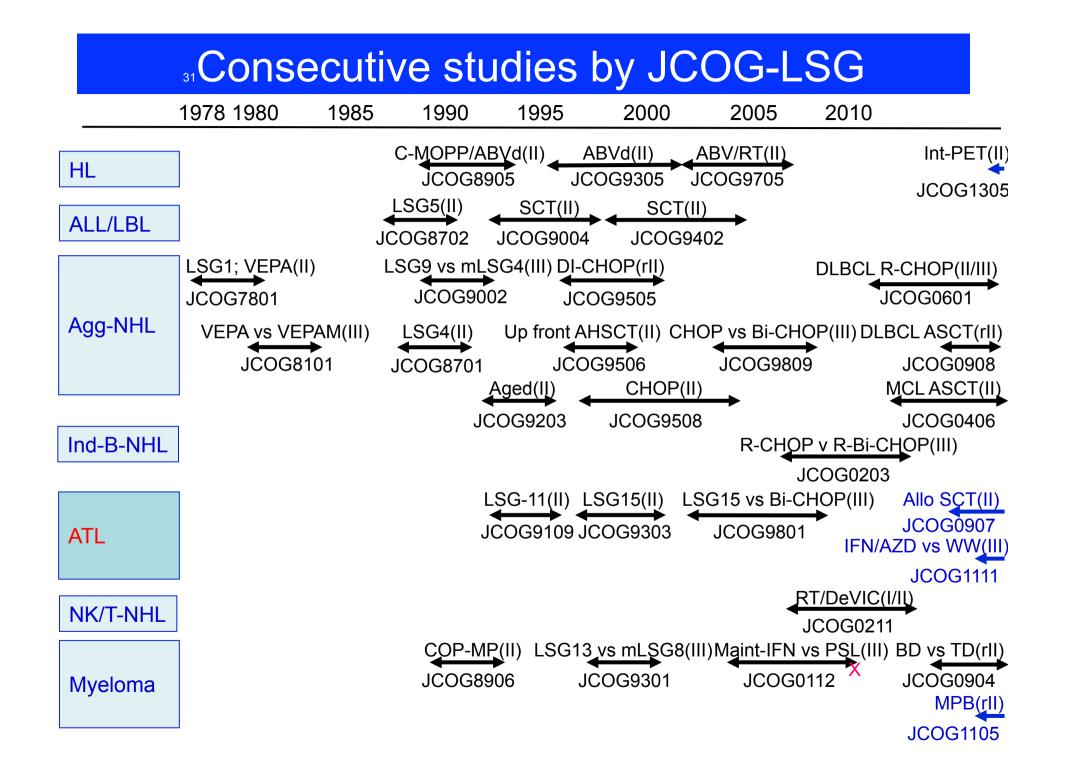
President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura


Disclosures of Kunihiro Tsukasaki

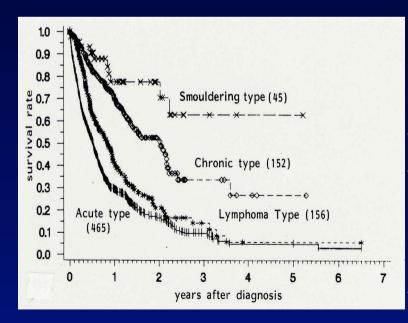

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Celgene	+				+		
Novartis Pharma					+		
Phyzer					+		
Chugai	+				+		
Kyowa Kirin Hakkou					+		
Glazxo Smith Kleine			+				
Takeda Bio	+						
Symbaio			+				
Ono Pharma			+				
Huya	+		+			+	
Daiichi Sankyo			+			+	

Adult T-cell leukemia-lymphoma (ATL)


Mature T-cell malignancy of Th2/Treg origin associated with HTLV-1
Several tens millions of HTLV-1 carriers in the world, endemic in south-west coast of Japan, mid-and south-America and Africa


- •About 5% of HTLV-1 carriers develop ATL during their life time
- Clinical feature is diverse and treatment strategy is based on subtype classification

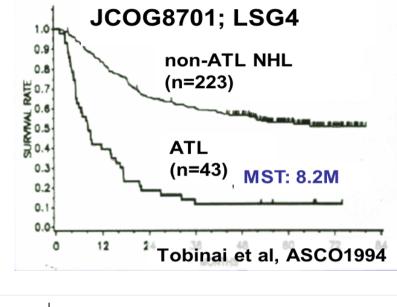
International peripheral T-cell and NK/T-cell lymphoma study: pathology findings and clinical outcomes on 1314 cases.

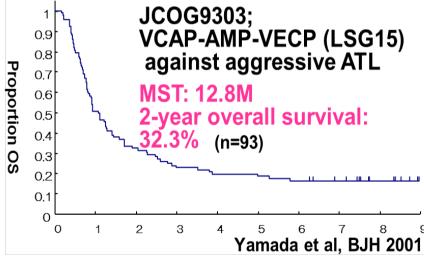

Comparison of CR rates by disease and chemotherapy in initial LSG trials for aggressive NHL

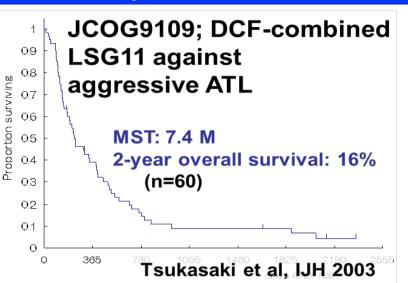
	B-lymphoma	PNTL	ATL	Total
7801(VEPA)	65/101	17/30	7/42	95/182
	(64%)	(57%)	(17%)	(52%)
8101(VEPAM)	33/40	5/9	11/30	51/82
	(83%)	(56%)	(37%)	(62%)
8701(LSG4)	123/151	28/42	18/43	193/267
	(82%)	(67%)	(42%)	(72%)

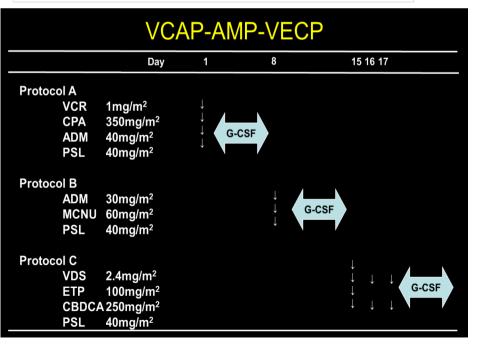
ATL; adult T-cell leukemia-lymphoma PNTL; peripheral non-ATL T-lymphoma

Nationwide survey for ATL by JCOG-LSG: 1984-1987 (n=854)

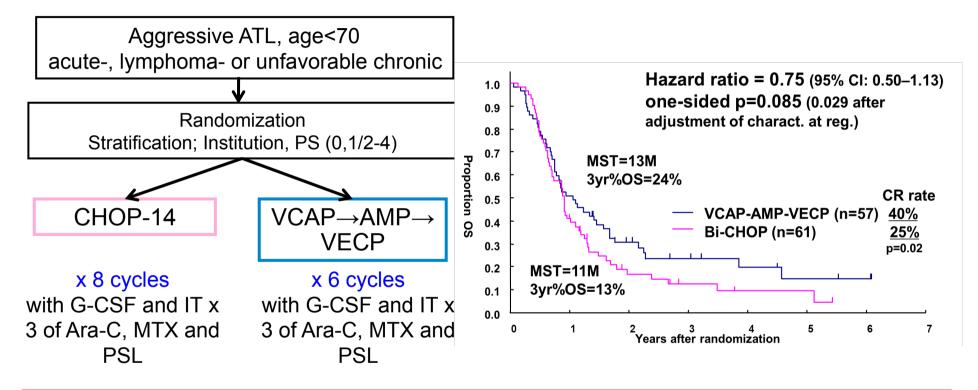

- Multi-variate analysis revealed 5 independent prognostic factors (LSG, Leuk Res, 1991);
 - PS, Age>60, LDH, Ca and No. of Total Involved Lesions
- Establishment of ATL subtypes based on natural history, clinical features and prognostic fa



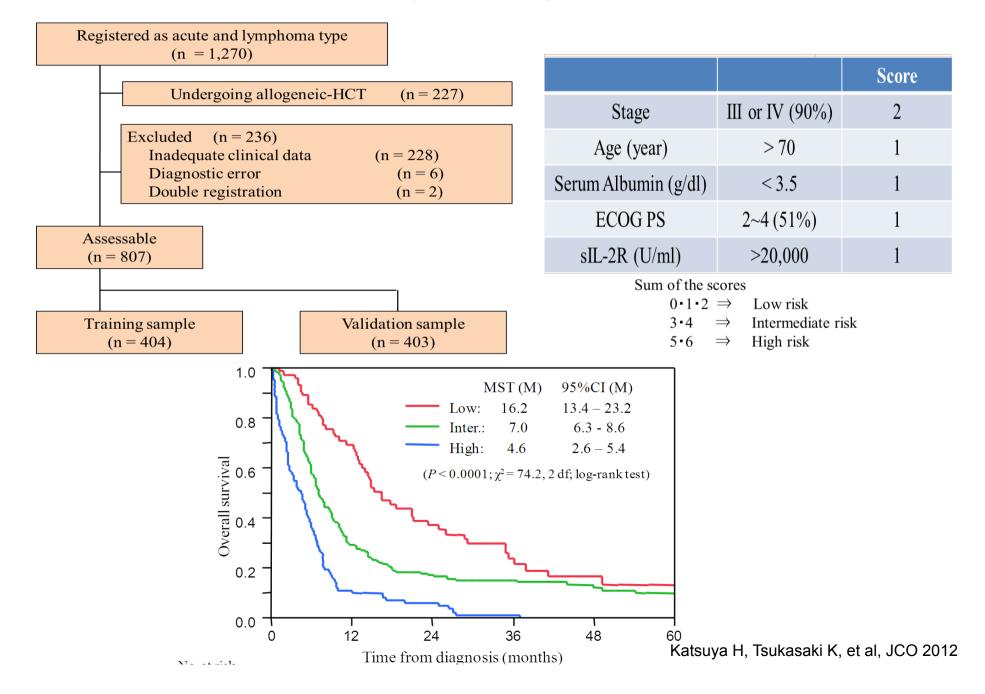

Clinical subtype:	Smoldering/Chronic	Acute/Lymphoma
Organ involvement	No / Minimum (Skin etc)	Yes
LDH level	Normal or raised =< x2	Raised > x 2
Calcium level	Normal	Raised
Median survival time	> 24 months	6-10 months

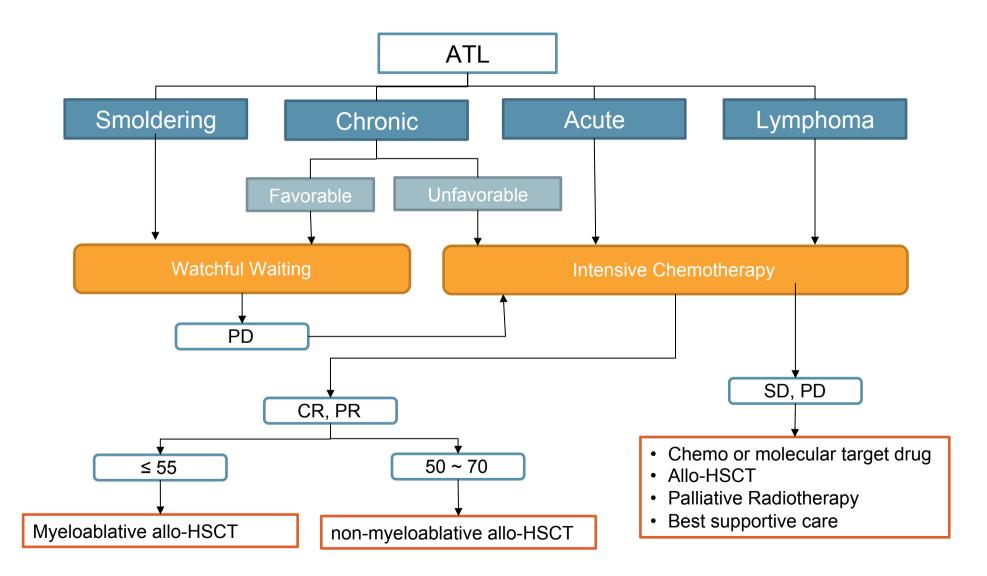

Shimoyama M, et al. B J Haematol, 1991

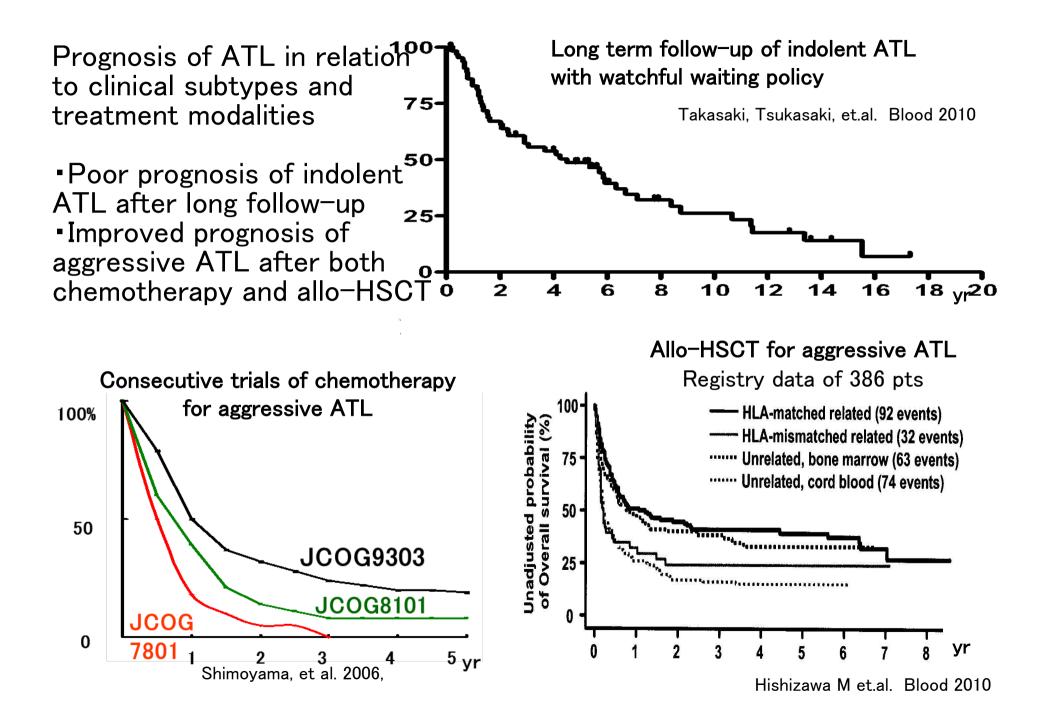
Consecutive Trials for ATL by JCOG-LSG



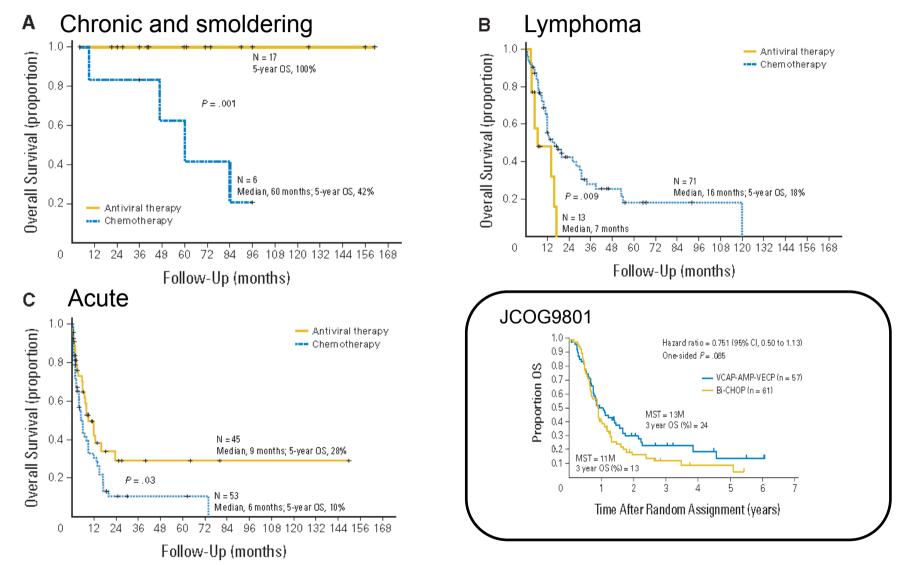
P-III study of VCAP-AMP-VECP vs. CHOP-14


in aggressive ATL: JCOG9801

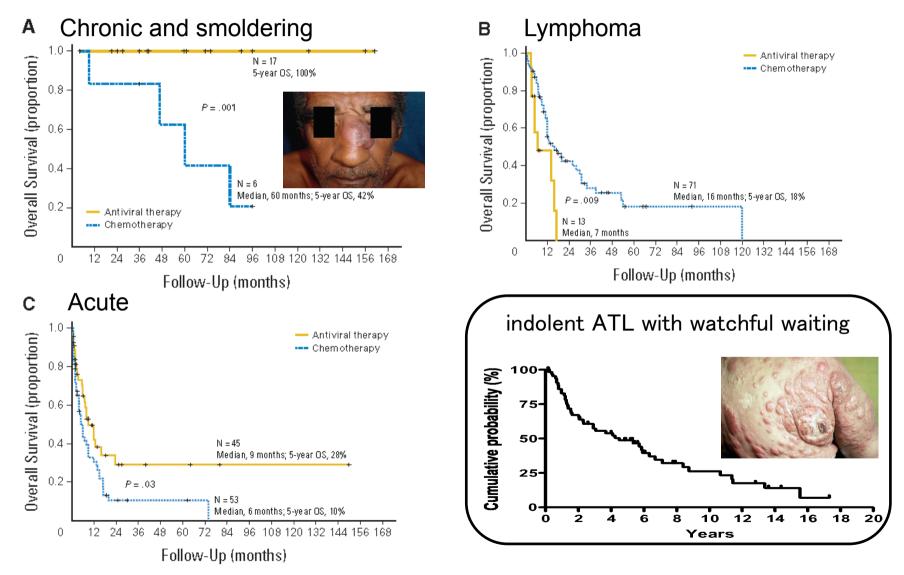

VCAP-AMP-VECP is a more effective regimen at the expense of higher toxicities, providing the basis for future investigations in the treatment of ATL


JCOG0902A: Characterization of Long-	Fukushima et al. 52nd ASH Annual Meeting, 2011.
Term Survivors and a Predictive Model for Aggressive ATL	stepwise Cox regression Prognostic factor HR P value
Objective1.Characterize long-term survivors2.Develop a prognostic model (JCOG-PI)stepwise Cox regression analysisand external validation	(95%Cl) Ca≧5.5mEq/L 1.688 0.007 (vs <5.5mEq/L) (1.156-2.466) PS: 2, 3, 4 1.493 0.018 (vs 0, 1) (1.073-2.078)
Patients all surivors test over 5-y over 2-y sample JCOG9109 62 8 5 40 JCOG9303 96 30 17 57 JCOG9801 118 29 15 96 Total 276 37 67 193	$ \begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$
Validation sample: 127	<pre> 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>

ATL-PI for acute-/lymphoma-type ATL from Japan



Overall Schema for Treatment of ATL: Guideline 2013 by Japanese Society of Hematology



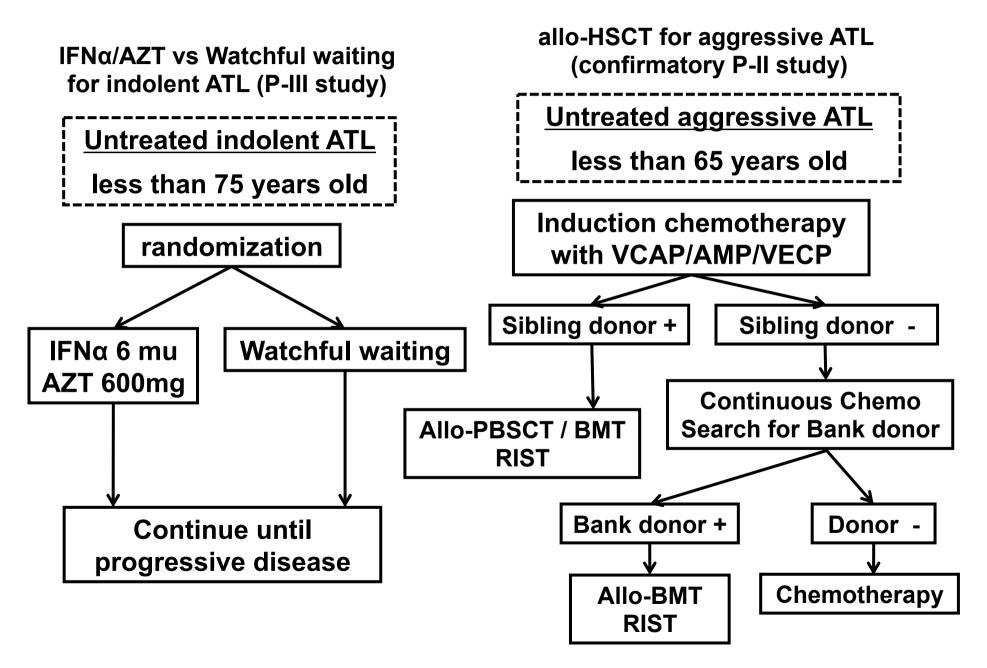
Interferon/Zidobudine for ATL —Retrospective survey—

Interferon/Zidobudine for ATL —Retrospective survey—

Bazarbachi, A, et al, J Clin Oncol 2010

Recommended strategy for the treatment of ATL

Smoldering- or favorable chronic-type ATL


- Symptomatic patients (skin lesions, opportunistic infections, etc): Consider AZT/IFN or Watch and Wait
- Asymptomatic patients: Consider Watch and Wait

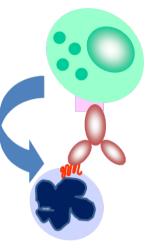
Unfavorable chronic- or acute-type ATL

- If outside clinical trials, check prognostic factors (including clinical and molecular factors if possible):
 - Good prognostic factors: consider chemotherapy (VCAP-AMP-VECP evaluated by a phase III trial against CHOP-14) or AZT/IFN (evaluated by a meta-analysis on retrospective studies)
 - Poor prognostic factors: consider chemotherapy followed by conventional or reduced intensity allo-HSCT (evaluated by retrospective and prospective Japanese studies, respectively).
 - Poor response to initial therapy: Consider conventional or reduced intensity allo-HSCT

International ATL Consensus Report; Tsukasaki, Ermine, Bazarbacchi, et al; J Clin Oncol, 2009

Ongoing ATL trials by JCOG-LSG

New agents are approved and under clinical development in ATL


Compound	MOA	Target	Phase
Mogamulizmab	Anti-CCR4 Ab	CCR4+ R ATL	Approved
Lenalidomide	Immune modulatory	R/R ATL	Approved
DS3201	EZH 1and 2 inhibitor	R/R ATL	I
Nivolumab	Anti-PD 1	R/R ATL	II
Abacavir	Nucleoside Reverse Transcriptase Inhibitor	R/R ATL	II
NY-ESO-1 Vaccine	T-cell receptor gene therapy	ATL with NY-ESO positive	la/lb
Chydamide	Histone deacetylase inhibitor (HDACI)	R/R ATL	Ш
Tax-DC vaccine	Modulation of Tax specific CTLs	ATL	la/lb

Mogamulizumab, a defucosylated anti-CCR4 Ab in ATL

ADCC

Antibody-dependent cellular cytotoxicity

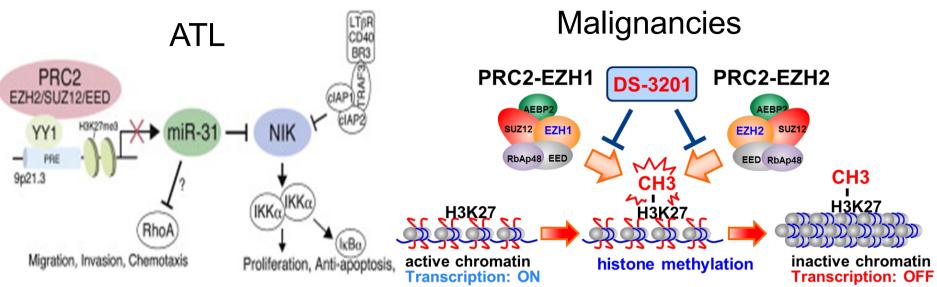
- One of the most important functions of the therapeutic antibodies
- Development of a first-in-class zerofucose humanized antibody with high **ADCC activity** targeting CCR4

CC chemokine receptor 4

- receptor for TARC & MDC
- G-protein coupled receptor
- Expression in cancer: some of the T cell lymphoma /leukemia
- Expression in normal tissues: some of the peripheral T-lymphocytes (Th2/Treq cells)

P-1 study of Mogamulizumab in relapsed PTCL/ATL

- MTD was not reached until 1mg/kg in 16 pts.
- RR was 31% including 2 CRs among 13 ATL patients.
- \rightarrow Recommended phase II dose: 1.0 mg/kg

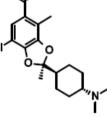

	P	2-2 study of	Mogan	nulizui Bes	mab i t res	n rela pons	psed a	aggressive ATL Response rate
D	isease site	n	CR	PR	SD	PD	NE	≥ PR (%) [95% CI]
	Blood	13	13	0	0	0	0	13 (<mark>100 %</mark>) -
	Skin	8	3	2	0	2	1	5 (<mark>63 %</mark>) [25-92)
e	Nodal & extranodal	12	3	0	4	5	0	3 (<mark>25 %</mark>) [6-57]
	Overall**	26	8	5	2	11	0	13 (50 %) [30-70]

PII Study of Lenalidomide in Pts With R/R ATL Lenalidomide 25 mg/day given continuously

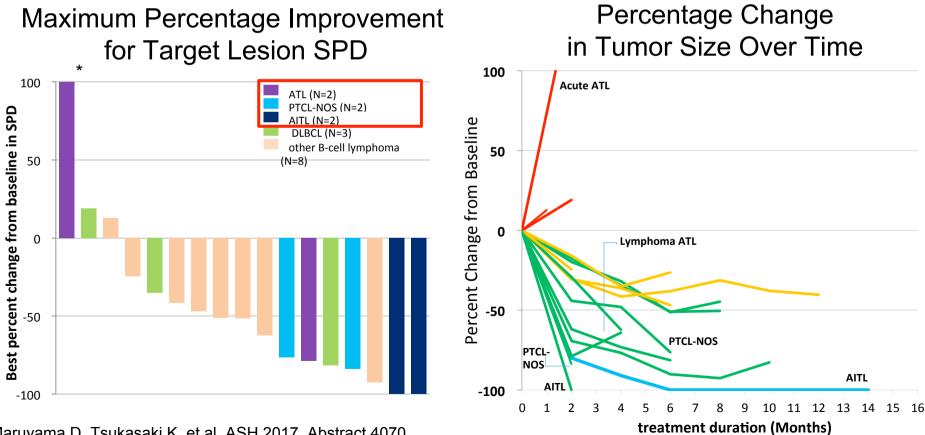
Population, n (%)	n	ORR	CR/ CRu	PR	SD	PD	
All patients	26	11 (42)	5 (19)	6 (23)	8 (31)	7 (27)	
By type Acute Lymphoma Unfavorable chronic	15 7 4	5 (33) 4 (57) 2 (50)	3 (20) 2 (29) 0	2 (13) 2 (29) 2 (50)	6 (40) 0 2 (50)	4 (27) 3 (43) 0	A (A) (A) (A) (D) (D) (D) (D) (D) (D) (D) (D
By prior mogamulizumab Yes No	11 15	2 (18) 9 (60)	1 (9) 4 (27)	1 (9) 5 (33)	6 (55) 2 (13)	3 (27) 4 (27)	26 5 2 1 0 B 1.0 0.9 0.9 0.8 0.7 0.6 0.6 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
By lesion Target lesion	16*	5 (31)	5 (31)	0	8 (50)	2 (13)	$\begin{bmatrix} 2 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ $
PGA	8	`6́ (75)	4 (50) [†]	2 (25)	2 (25)	`О́	0 5 10 15 20 25 Time (months)
Peripheral blood	10	6 (60)	(00) 4 (40)	2 (20)	2 (20)	2 (20)	26 21 12 9 3 0

• Responses were observed in all lesion types Ishida T, Tsukasaki K, et al. JCO 2016

EZH1/2 Dual Inhibitor


 Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in ATL and other cancers.

• EZH1 and EZH2 are methyltransferases which specifically methylate histone H3 lysine 27 by forming a multi-protein complex termed polycomb repressive complex 2 (PRC2). Both PRC2-EZH1 and PRC2-EZH2 can create tri-methylated H3K27, which is important for suppression of tumor suppressor genes or cell differentiation genes.


• DS-3201b is a dual inhibitor of EZH 1 and EZH2, an oral agent, that has demonstrated anti-tumor activity against ATL in preclinical studies.

FIH Study of the EZH1/2 Dual Inhibitor, DS-3201b

Best Response	B-cell lymphoma (n=11)	T-cell lymphoma (n=6)	All (n=17)
CR <i>,</i> n (%)	0 (0)	1 (16.7)	1 (5.9)
PR <i>,</i> n (%)	5 (45.5)	4 (66.7)	9 (52.9)
SD, n (%)	4 (36.4)	0 (0)	4 (23.5)
PD, n (%)	2 (18.2)	1 (16.7)	3 (17.6)

DS-3201

Maruyama D, Tsukasaki K, et al. ASH 2017. Abstract 4070

Conclusions and future directions

- Subtype-classification is useful for treatment strategy, however, prognosis is diverse in each subtype of ATL.
- Proposed prognostic index through JCOG trials and nationwide survey are not sufficient to elucidate very good.
 prognostic patients who do not require up-front allo-HSCT
- Rapid aging of patients with ATL.
- Molecular/biomarkers for treatment strategies: WW, IFN/ AZT therapy, chemotherapy and allo-HSCT.
- Optimal combination therapies with new agents such as mogamulizmab, lenalidomide and so on.
- Elucidation of resistance-mechanisms to each treatment strategy.
- Continuous clinical trials including global ones for this intractable and rare disease.

Acknowledgements: JCOG-LSG as shown in below Members of Kyowa Kirin Hakko, Celgene and Daijchi Sankyo

NHO Hokkaido Cancer Center Sapporo Hokuyu Hospital

NHO Kyushu Cancer Center Fukuoka University NHO Kyushu Medical Center Univ of Occupat and Enviroment Health Saga University Hospital NHO Nagasaki Medical Center Sasebo General Hospital Nagasaki University Japanese Red Cross Nagasaki Genbaku Hospital Kumamoto University Oita Prefectural Hospital NHO Kumamoto Medical Center Kagoshima University Imamura Bun-in Hospital Hospital, University of the Ryukyus

> Okayama Medical Center Hiroshima University NHO Shikoku Cancer Center Ehime University

Kanazawa Medical University Fukui University

Kyoto Prefectural University of Medicine Shiga Medical Center for Adults Hyogo Cancer Center Hospital

> Hamamatsu Medical University Aichi Cancer Center Hospital NHO Nagoya Medical Center Nagoya City University Nagoya University Nagoya Daini Red Cross Hospital Aichi Medical University Toyota Kosei Hispital Mie University

Tohoku University Akita University

Gunma University Saitama Cancer Center Hospital Saitama Medical Center, Saitama Medical University National Cancer Center Hospital East Chiba Cancer center Hospital East Chiba Cancer Center Hospital National Cancer Center Hospital Kyorin University Tokyo Metropolitan Komagome Hospital Jikei University Hospital Jikei University Hospital Juntendo University Hospital NTT Medical Center Tokyo Tokai University