New drugs in leukemia

Giovanni Martinelli, MD

Istituto "L. e A. Seragnoli" University of Bologna

Udine 2016

WHY we don't cure Ph+ leukemias?

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

P53 (and Myc) as a target !

asymmetric division

The mdm2-mdm4 inhibition restore P53 dependent activation of immunological surveillance

Phase 1/1b Study of RG7388, a Potent MDM2 Antagonist, in Acute Myelogenous Leukemia (AML) Patients (Pts)

Karen Yee¹, Giovanni Martinelli², Norbert Vey³, Michael J. Dickinson⁴, Karen Seiter⁵, Sarit Assouline⁶, Mark Drummond⁷, Sung-Soo Yoon⁸, Margaret Kasner⁹, Je-Hwan Lee¹⁰, Kevin R. Kelly¹¹, Steven Blotner¹², Brian Higgins¹², Steven Middleton¹², Gwen Nichols¹², Gong Chen¹², Hua Zhong¹², William E. Pierceall¹², Jianguo Zhi¹² and Lin-Chi Chen¹²

¹Princess Margaret Hospital, Toronto, Canada; ²Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; ³Hematology Department, Institut Paoli Calmettes, Marseille, France; ⁴Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia; ⁵New York Medical College, Valhalla, NY; ⁶Division of Hematology, Jewish General Hospital, McGill University, Montreal, QC, Canada; ⁷Beatson West of Scotland Cancer Centre, Gartnavel General Hospital, Glasgow, Scotland; ⁸Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; ⁹Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; ¹⁰Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ¹¹Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX; ¹²Roche Innovation Center New York, Roche Pharma Research & Early Development, New York, NY

RG7388 AML Phase 1/1b Responses

Change in bone marrow blasts from baseline

Response definitions:

CR: < 5% marrow blasts with complete recovery of peripheral counts CRi/MLFS: < 5% marrow blasts with incomplete/no recovery of peripheral counts PR: > 50% decrease in marrow blasts

*All bone marrow assessments performed at d28 or later except for one patient each in the single agent and combination therapy arms.

Targeting the micro-enviromental?

Cancer Cell 2015

Targeting the metabolic pathways of cancer

PIPELINE

Abstract 115 (Stein) AG-221, an Oral, Selective, First-in-Class, Potent Inhibitor of the IDH2 Mutant Metabolic Enzyme, Induces Durable Remissions in a Phase I Study in Patients with IDH2 Mutation Positive Advanced Hematologic Malignancies

	≤75 mg (n=9)	100 mg (n=14)	≥150 mg (n=22)	Total (n=45 efficacy evaluable)
CR	3	3	•	6
CRp	1	1	2	4
mCR	-	2	2	4
CRI			1	1
PR	-	3	7	10
SD	5	3	9	17
PD	•	1	1	2
Disease Not Evaluable	-	1	•	1
Overall Response Rate"	4/9 (44%)	9/14 (64%)	12/22 (55%)	25/45 (56%) 95% CI (40%, 70%)

CR = complete response

CRp = complete response, incomplete platelet recovery Marrow CR = <5% blasts in BM; no hematological recovery CRi = complete response, incomplete hematologic recovery PR = partial response SD = stable disease PD = progressive disease

* Includes patients with a Day 28 response assessment as of October 1, 2014. Excludes 12 on-going patients with Day 28 not yet available and 16 patients off study without a Day 28 assessment.
** ORR = CR + CRp + mCR + CRi + PR

"Atra Like"

Top 7 Highlights From the 2014 ASH Meeting

December 12, 2014 By Anna Azvolinsky, PhD

Slide 5: Activity of First-in-Class IDH2 Inhibitor in AML Validates IDH2 as Therapeutic Target—A phase I study of AG-221, an oral, first-in-class inhibitor of isocitrate dehydrogenase 2 (IDH2), has validated IDH2 as a therapeutic target in *IDH2*mutated hematologic cancers, including acute myeloid leukemia (AML). Of a total of 45 patients who could be evaluated for efficacy, 25 patients (56%) responded, including 6 patients who achieved complete responses. The most common adverse A Phase 1/2 Study of ABT-199 in Combination with Low-Dose Cytarabine in Treatment-Naïve Subjects with Acute Myelogenous Leukemia Who Are ≥ 65 Years of Age and Who Are Not Eligible for Standard Anthracycline-Based Induction Therapy

> ABT-199 M14-387 Protocol

> > EudraCT 2014-002610-23

Investigational therapy

Study rationale

- Bcl-2 over-expression has been implicated in the maintenance and survival of AML cells and has been associated with resistance to chemotherapeutics. In addition, high levels of Bcl-2 were associated with poor survival in a subset of patients with this disease
- Combinations of ABT-199 and chemotherapeutic agents commonly used in the treatment of AML were tested against a panel of 20 AML cell lines. While most combinations resulted in additive cell killing, ABT-199 combined with cytarabine or azacitidine showed synergistic effects on several AML cell lines

Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013

Tsao T, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012

Investigational therapy

Diagnosis and Main Criteria for Inclusion/Exclusion:

Main Inclusion:

A subject will be eligible for study participation if he/she meets the following criteria within 21 days prior to the first day of therapy:

- 1. Subject must be \geq 65 years of age.
- 2. Subject must have a projected life expectancy of at least 12 weeks.
- 3. Subject must have histological confirmation of AML and be ineligible for treatment with a standard cytarabine and anthracycline induction regimen due to co-morbidity or other factors.
- Subject must have received no prior treatment for AML with the exception of hydroxyurea, allowed through the first cycle of study treatment. Note: Subject may have been treated for prior Myelodysplastic Syndrome.
- 5. Subject must have an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2.
- Subject must have adequate renal function as demonstrated by a calculated creatinine clearance ≥ 50 mL/min; determined via urine collection for 24-hour creatinine clearance or by the Cockcroft-Gault formula.
- 7. Subject must have adequate liver function as demonstrated by:
 - aspartate aminotransferase (AST) ≤ 2.5 × ULN*
 - alanine aminotransferase (ALT) ≤ 2.5 × ULN*
 - bilirubin ≤ 1.5 × ULN*

Dose level 2

 Cycle = 28 days. ABT-199 dose will be administered on Day 1 - Day 28 starting with Cycle 2, at the designated cohort dose of 800 mg.

A Phase 1/2 Open-Label, Dose Escalation Study Investigating the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP2215 in Patients with Relapsed or Refractory Acute Myeloid Leukemia

Protocol for Phase 1/2 Study of ASP2215

Gimema Clinical Trial LAL1811

Front-line treatment of Philadelphia positive (Ph+)/BCR- ABL positive Acute Lymphoblastic Leukemia (ALL) with AP24534 (Ponatinib), a new potent tyrosine kinase inhibitor (TKI).

A phase II exploratory **multicentric study** in patients **more than 60 years** old **or unfit** for a program of intensive chemotherapy and stem cell transplantation

ClinicalTrial number CT01641107

Treatment Schedule

Steroid pre-treatment x 7-14 days (and for 28 days during Ponatinib administration)

Ponatinib 45 mg/daily x 6 weeks (1 course) x 8 courses

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Efficacy measure: Clinical and Response Data

n
9/5
68(42-74)
4660 (1900-186900)
8.7 (7.1-9.9)
38000 (11000-121000)
8/6
11/11 (3 not already evaluated)
1 (no treatment adherence @ day +250)
1 in CR

Efficacy outcome:

ALL pts experienced rapid and very deep molecular responses

No evidence of emerging point mutations resistant to Ponatinib in until now treated patients

Why Ponatinib works? It targets Hck LSC gene?

Sci Transl Med. 2010 February 3; 2(17): 17ra9. doi:10.1126/scitranslmed.3000349.

Identification of Therapeutic Targets for Quiescent, Chemotherapy-Resistant Human Leukemia Stem Cells

Yoriko Saito^{1,*}, Hiroshi Kitamura^{2,*}, Atsushi Hijikata², Mariko Tomizawa-Murasawa¹, Satoshi Tanaka³, Shinsuke Takagi¹, Naoyuki Uchida⁴, Nahoko Suzuki¹, Akiko Sone¹, Yuho Najima¹, Hidetoshi Ozawa¹, Atsushi Wake⁴, Shuichi Taniguchi⁴, Leonard D. Shultz⁵, Osamu Ohara², and Fumihiko Ishikawa^{1,†}

¹ Research Unit for Human Disease Models, RIKEN Research Center for Allergy and Immunology, Yokohama, 230-0045 Japan

Ponatinib inhibits necroptosis

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Ponatinib and necroptosis

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

New Targets for Acute Leukemia Stem Cell Therapy

Inotuzumab Ozogamicin (CMC-544) CD22-targeted

Advani A, et al. J Clin Oncol 2010;28:2085–2093

Inotuzumab in ALL. Complete Remission Duration & Progression Free Survival

EHA 2015 InQ Study 1022 data LBA (Subm. Deadline: April 27) April 22, 2015 Draft 1 INO15189.2005

EFFICACY AND SAFETY OF INOTUZUMAB OZOGAMICIN (INO) VS STANDARD OF CARE (SOC) IN SALVAGE 1 OR 2 PATIENTS WITH ACUTE LYMPHOBLASTIC LEUKEMIA (ALL): ONGOING GLOBAL PHASE 3 STUDY

Daniel J. DeAngelo,¹ Matthias Stelljes,² Giovanni Martinelli,³ Hagop M. Kantarjian,⁴ Michaela Liedtke,⁵ Wendy Stock,⁶ Nicola Goekbuget,⁷ Kongming Wang,⁸ Luisa Pacagnella,⁹ Barbara Sleight,⁹ Erik Vandendries,⁸ Anjali S. Advani¹⁰

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Universitätsklinikum <u>Münster</u>, <u>Münster</u>, Germany; ³<u>Institute Seragnoli</u>, University of Bologna, Bologna, Italy; ⁴MD Anderson Cancer Center, Houston, TX, USA; ⁵Stanford Cancer Institute, Stanford, CA, USA; ⁶University of Chicago,

EHA 2015 InO Study 1022 data LBA (Subm. Deadline: April 27) April 22, 2015 Draft 1 INO15189.2005

% (95% CI)	<u>lnQ</u> (n=109)	SOC (n=109)	1-sided <i>P</i> -Value		
CR/CRi ^a	80.7 (72–88)	29.4 (21–39)	<0.0001		
S1	87.7	31.3	< 0.0001		
S2	66.7	37.9	0.0011		
Median DOR, <u>mo</u>	4.6 (3.9–5.4)	3.1 (1.4–4.9)	0.0169		
MRD-neg in pts with CR/CRi	78.4 (68–87)	28.1 (14–47)	< 0.0001		
^a Modified ITT analysis excluding 13 untreated SOC pts; assessed per independent endpoint adjudication					
committee					

BiTE[®] (Bispecific T Cell Engager) Antibodies

<u>1. Baeuerle PA, et al. *Bispecific Antibodies.* 2011:273-287. 2. Baeuerle PA, et al. *Cancer Vaccines. From* <u>Research to Clinical Practice.</u> 2011:250-262. 3. Hoffman P, et al. *Int J Cancer.* 2005;115:98-104. 4. Kurschus FC, et al. *Immunol Rev.* 2010;235:159-171.</u>

BiTE[®] Mediate T Cell Recognition of Surface Antigens

Blinatumomab (MT103), a Bispecific

T Cell Engaging Single-chain BiTE® Antibody

JOURNAL OF CLINICAL ONCOLOGY

Complete Molecular and Hematologic Response in Adult Patients With Relapsed/Refractory (R/R) Philadelphia Chromosome-Positive B-Precursor Acute Lymphoblastic Leukemia (ALL) Following Treatment With Blinatumomab: Results From a Phase 2 Single-Arm, Multicenter Study (ALCANTARA)

Giovanni Martinelli,¹ Hervé Dombret,² Patrice Chevallier,³ Oliver Ottmann,⁴ Nicola Gökbuget,⁵ Max S. Topp,⁶ Adele K. Fielding,⁷ Lulu Ren Sterling,⁸ Jonathan Benjamin,⁹ Anthony Stein¹⁰

¹Institute of Hematology and Medical Oncology "L. e A. Seragnoli", Bologna, Italy; ²University Paris Diderot, Hôpital Saint-Louis, Paris, France; ³Hematology, CHU Nantes, Nantes, France; ⁴Department of Haematology, Cardiff University, Cardiff, UK; ⁵Department of Medicine II, Goethe University, Frankfurt, Germany; ⁶Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany; ⁷Department of Haematology, UCL, London, UK; ⁸Amgen Inc., San Francisco, CA, USA; ⁹Amgen Inc., Thousand Oaks, CA, USA; ¹⁰Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, USA

Outcomes Are Poor for Adults with Philadelphia Chromosome-Positive (Ph+) R/R ALL

- Ph+ is the most common single cytogenetic abnormality in B-precursor ALL
 - ~25% of adult ALL is Ph+ and frequency of Ph+ disease increases with age
- Ph+ ALL historically has a poor prognosis
- TKIs have improved outcomes
 - Addition to firstline therapy has increased response rates and likelihood of achieving alloHSCT¹
 - Sequential use of chemotherapy ± alternative TKIs is the dominant approach to treating Ph+ R/R ALL when alloHSCT is not an option
 - Emergence of single and compound point mutations in *BCR-ABL* is responsible for a significant proportion of TKI resistance²

TKI monotherapy	Nilotinib ³	Dasatinib ⁴	Ponatinib ⁵	
	(N = 41)	(N = 36)	(N = 32)	
Complete hematologic response	45%	33%	41% (MHR)	
Median overall survival (OS)	5.2 months	3.3 months*	8.0 months	
OS at 1 year	27%	NA	40%	

* Progression-free survival

alloHSCT, allogeneic hematopoietic stem cell transplantation; MHR, major hematologic response; NA, not available; TKI, tyrosine kinase inhibitor

- 1. Fielding AK, et al. *Blood* 2014;123(6):843-850.
- 2. Zabriskie MS, et al. Cancer Cell 2014;26:428-442.
- 3. Ottmann OG, et al. *Leukemia* 2013;27:1411-1413.
- 4. Ottmann OG, et al. Blood 2007;110(7):2309-2315.
- 5. Cortes JE, et al. *N Eng J Med* 2013;369(19):1783-1796.

BiTE[®] Antibody Construct, Blinatumomab

- Blinatumomab is a bispecific T-cell engaging antibody (BiTE[®]) construct
- Blinatumomab redirects T cells to lyse CD19-positive malignant and nonmalignant B cells¹
- CD19 is expressed in virtually all tested B-lineage ALL cells and throughout B-cell development^{2,3}
- 43% CR/CRh as monotherapy in Ph-negative R/R ALL⁴

- 1. Bargou R, et al. Science. 2008;321:974-977.
- 2. Raponi S, et al. Leuk Lymphoma. 2011;52:1098–1107.
- 3. Piccaluga P, et al. Leuk Lymphoma. 2011;52:325-327.
- 4. Topp MS, et al. Lancet Oncol. 2015;16:57-66.

Open-Label, Single-Arm, Multicenter Phase 2 Study in Ph+ R/R ALL

* Only cycle 1, days 1 to 7: 9 µg/day

CR, complete remission; CRh, complete remission with partial hematological recovery of peripheral blood counts (platelets > $50,000/\mu$ L and ANC > $500/\mu$ L); cIV, continuous intravenous; HSCT, hematopoietic stem cell transplantation

Eligibility

Key Inclusion Criteria

•Adults (≥ 18 years) with Ph+ B-precursor ALL

- Relapsed or refractory to at least one 2+ generation TKI or
- Intolerant to 2+ generation TKI and intolerant/refractory to imatinib
- •> 5% bone marrow blasts
- •ECOG performance status ≤ 2

Key Exclusion Criteria

•Allogeneic HSCT within 12 weeks prior to start of blinatumomab

•Active acute or active chronic (grade 2–4) GvHD, or systemic treatment for GvHD within 2 weeks before treatment start

•History or presence of clinically relevant CNS pathology (epilepsy, seizure, paresis, aphasia, stroke, severe brain injuries, dementia, Parkinson's disease, cerebellar disease, organic brain syndrome, psychosis)

Response During First Two Cycles

	n / N		95% CI
Primary endpoint			
CR/CRh	16 / 45	36%	22–51
T315I mutation	4 / 10	40%	
≥ 2 prior 2+ generation TKI	11 / 27	41%	
Prior ponatinib treatment	8 / 23	35%	
Age 18 to < 55 years	8 / 22	36%	17–59
Age ≥ 55 years	8 / 23	35%	16–57
Secondary endpoints			
Best response			
CR	14 / 45	31%	18–47
CRh	2 / 45	4%	1–15
CRi (not qualifying for CRh)	2 / 45	4%	1–15
Complete MRD response*	14 / 16	88%	62–98
HSCT after blinatumomab-induced remission	4 / 16	25%	
100-day post-transplant mortality rate	1/4	25%	4–87

* Among CR/CRh responders only; includes all four CR/CRh patients with the T315I mutation. Complete MRD response = no detectable PCR amplification of Ig or TCR genes in central lab with a sensitivity of 10⁻⁵

CR, complete remission; CRh, complete remission with partial hematological recovery of peripheral blood counts;

CRi, complete response incomplete; MRD, minimal residual disease

Overall Survival

NE, not estimable

Median follow-up: 8.8 months

Conclusions

- The present study showed single-agent antileukemia activity of blinatumomab in patients with Ph+ R/R ALL who had failed 2+ generation TKI therapy, with a CR/CRh rate of 36% (95% CI, 22–51)
- Hematologic and molecular responses were independent of mutational status, including presence of the T315I mutation
 - Equivalent CR/CRh and RFS observed in patients < 55 and ≥ 55 years of age
- Among responders, 88% (14/16) achieved complete MRD response
 - Of these, 100% (6/6) with ABL-kinase domain mutations had complete MRD response
- Median OS of 7.1 months was observed in this poor prognostic Ph+ patient population
- Adverse events were consistent with previous blinatumomab treatment experience in the setting of Ph-negative R/R ALL

Home » Platforms » DART™

DART[™] Platform Anti CD123

Ligand Targeting

(i.e., cytokine blockade)

Signaling Modulation

(i.e., suppression or blockade of an activating signal) Redirected Effector Cell Killing

STANDARD COVER PAGE					
Document title	CLINICAL STUDY PROTOCOL				
Study title	A phase I, dose escalation study of S 80880, a CD123 x CD3 Dual Affinity Re-Targeting (DART) bi-specific antibody-based molecule given as monotherapy, in continuous intravenous infusion, in patients with acute leukaemias and other haematological malignancies expressing CD123				
Test drug code	S 80880				
Indication	AML, MDS, B-ALL, BAL, BPDCN				
Development phase	Phase I				
Protocol code	CL1-80880-001				
EudraCT Number	To be completed if applicable (otherwise "Not applicable")				
Universal Trial Number	To be completed if applicable(otherwise "Not applicable")				
Sponsor	I.R.I.S.				
Date of the document	24/01/2014				

Acknowledgments

PR	EN	DI	UN	AP	PUN	ITAME	NTO	
Ric	evi	in	for	məzi	ioni	senza	impeg	gno
c,	TEL	. 0)51	636	322	27		

HOME PAGE CHI SIAMO

ATTIVITA' CLINICHE

PER I PAZIENTI RICERCA

contatti | partner | privacy | credits

Ο

Supported by: FP7, European LeukemiaNet, AIL, AIRC, FIRB 2006, Fondazione del Monte di Bologna e Ravenna

Acknowledgments

Hematology/Oncology University of Bologna:

Manuela Mancini Caterina De Benedittis Luca Zazzeroni Cristina Papayannidis Giovanni Martinelli

Personal Genomics & University of Verona:

Massimo Delledonne Alberto Ferrarini Elisa Zago Marianna Garonzi Anna Scandola Department of Hematology and Hemostaseology, Medical University of Vienna:

> Peter Valent Sabine Cerny-Reiterer

U.O.Corelab- Hematology Cesena:

Michela Rondoni

